Sample Question Paper

Basic (Code 241)

ANSWERS

Section - A

1. (a)
2. (c)
3. (b)
4. (d)
5. (b)
6. (c)
7. (a)
8. (b)
9. (b)
10. (d)
11. (a)
12. (b)
13. (b)
14. (d)
15. (c)
16. (d)
17. (a)
18. (a)
19. (b)
20. (c)

Section - B

21. Here $a_{1}=4, a_{2}=2, b_{1}=p, b_{2}=2$.

Now for the given pair of equations to have unique solution

$$
\begin{array}{ll}
& \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \\
\text { i.e. } & \frac{4}{2} \neq \frac{p}{2} \\
\Rightarrow & p \neq 4
\end{array}
$$

Therefore, all the values for p, except 4, the given pair of equations will have a unique solution.
22. Given, E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects CD at F. Consider the figure below.

In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$,

	$\angle \mathrm{A}$	$=\angle \mathrm{C}$	[Opposite angles of a parallelogram]	
	$\angle \mathrm{AEB}$	$=\angle \mathrm{CBF}$	[Alternate interior angles as $\mathrm{AE} \\| \mathrm{BC}$]	
\therefore	$\triangle \mathrm{ABE}$	$\sim \triangle \mathrm{CFB}$	[AA similarity criterion]	

22. Given

$$
\mathrm{OA} \times \mathrm{OB}=\mathrm{OC} \times \mathrm{OD}
$$

So,

$$
\begin{equation*}
\frac{\mathrm{OA}}{\mathrm{OC}}=\frac{\mathrm{OD}}{\mathrm{OB}} \tag{1}
\end{equation*}
$$

Also, we have $\quad \angle \mathrm{AOD}=\angle \mathrm{COB}$
[Vertically opposite angles]
Therefore, from (1) and (2), $\triangle \mathrm{AOD} \sim \Delta \mathrm{COB}$
[SAS similarity criterion]
So,
$\angle \mathrm{A}=\angle \mathrm{C}$ and $\angle \mathrm{D}=\angle \mathrm{B}$
[Corresponding angles of similar triangles]
23. $A B$ is the chord of the circle with centre O and radius $O A$ and $O M \perp A B$.

Diameter of the circle $=20 \mathrm{~cm}$

$$
\begin{aligned}
\text { Radius } & =\frac{20}{2}=10 \mathrm{~cm} \\
\mathrm{OA} & =10 \mathrm{~cm}, \mathrm{OM}=6 \mathrm{~cm}
\end{aligned}
$$

Now in right $\triangle \mathrm{OAM}$,

$$
\begin{array}{ll}
& \mathrm{OA}^{2}=\mathrm{AM}^{2}+\mathrm{OM}^{2} \quad[\text { By Pythagoras' Theorem }] \\
\Rightarrow & (10)^{2}=\mathrm{AM}^{2}+6^{2}
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{AM}^{2}=100-36 \\
\Rightarrow & \mathrm{AM}^{2}=64 \\
\therefore & \mathrm{AM}=8 \mathrm{~cm}
\end{array}
$$

Since, the perpendicular drawn from the centre of a circle to a chord bisects the chord.
M is the mid-point of $A B$.

$$
\mathrm{AB}=2 \mathrm{AM}=2 \times 8=16 \mathrm{~cm}
$$

Hence, the length of the chord is 16 cm .
24. Given

$$
13 \sin A=5 \quad \Rightarrow \quad \sin A=\frac{5}{13} .
$$

$$
\cos ^{2} \mathrm{~A}=1-\left(\frac{5}{13}\right)^{2}=1-\frac{25}{169}=\frac{144}{169}
$$

$$
\begin{gathered}
\therefore \quad \cos \mathrm{A}=\frac{12}{13} \\
\tan \mathrm{~A}=\frac{\sin \mathrm{A}}{\cos \mathrm{~A}}=\frac{5}{13} \times \frac{13}{12}=\frac{5}{12}
\end{gathered}
$$

$$
\left[\cos ^{2} \mathrm{~A}=1-\sin ^{2} \mathrm{~A}\right]
$$

$$
\therefore \quad \frac{5 \sin \mathrm{~A}-2 \cos \mathrm{~A}}{\tan \mathrm{~A}}=\frac{5 \times \frac{5}{13}-2 \times \frac{12}{13}}{\frac{5}{12}}=\frac{\frac{1}{13}}{\frac{5}{12}}=\frac{12}{65}
$$

25. Circumference of circle $=22 \mathrm{~cm}=2 \pi r$

$$
\begin{array}{rlrl}
\therefore & 2 \times \frac{22}{7} \times r & =22 \\
\Rightarrow & r & =\frac{22 \times 7}{22 \times 2}=\frac{7}{2} \mathrm{~cm} \\
\therefore & & \text { Area of quadrant } & =\frac{1}{4} \pi r^{2} \\
& =\frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2}=\frac{77}{8} \mathrm{~cm}^{2} \\
& & \text { or }
\end{array}
$$

25.

$$
\begin{array}{rlrl}
& & \text { Area of sector } & =154 \mathrm{~cm}^{2} \\
\Rightarrow & \frac{1}{2} l r & =154 \\
\Rightarrow & \frac{1}{2} l \times 14 & =154 \\
\therefore & l & =22
\end{array}
$$

Length of the corresponding arc, $l=22 \mathrm{~cm}$

Section - C

26. Suppose that $\sqrt{3}+\sqrt{5}$ is rational, say r.

Then,

$$
\sqrt{3}+\sqrt{5}=r
$$

$$
\begin{array}{rlrl}
\Rightarrow & \sqrt{5} & =r-\sqrt{3} \\
\Rightarrow & (\sqrt{5})^{2} & =(r-\sqrt{3})^{2} \\
\Rightarrow & 5 & =r^{2}+3-2 \sqrt{3} r \\
\Rightarrow & 2 \sqrt{3} r & =r^{2}-2 \\
& & \sqrt{3} & =\frac{r^{2}-2}{2 r}
\end{array}
$$

As r is rational and $r \neq 0$, So $\frac{r^{2}-2}{2 r}$ is rational.
$\Rightarrow \quad \sqrt{3}$ is rational.
But this contradicts that $\sqrt{3}$ is irrational. Hence, our supposition is wrong. Therefore, $\sqrt{3}+\sqrt{5}$ is an irrational number.
27. The given equation is $x^{2}+x-(a+2)(a+1)=0$

Composing with $\mathrm{A} x^{2}+\mathrm{B} x+\mathrm{C}=0$, we get

$$
\begin{aligned}
\mathrm{A}=1, \mathrm{~B}=1, \mathrm{C} & =-(a+2)(a+1)=-\left(a^{2}+3 a+2\right) . \\
x & =\frac{-1 \pm \sqrt{1^{2}-4 \times 1\left[-\left(a^{2}+3 a+2\right)\right]}}{2 \times 1} \\
& =\frac{-1 \pm \sqrt{1+4\left(a^{2}+3 a+2\right)}}{2} \\
& =\frac{-1 \pm \sqrt{4 a^{2}+12 a+9}}{2} \\
& =\frac{-1 \pm \sqrt{(2 a+3)^{2}}}{2}=\frac{-1 \pm(2 a+3)}{2} \\
& =\frac{-1+2 a+3}{2}, \frac{-1-2 a-3}{2} \\
& =\frac{2 a+2}{2}, \frac{-(2 a+4)}{2} \\
x & =a+1,-(a+2)
\end{aligned}
$$

\therefore Roots of the given equation are $(a+1),-(a+2)$.
28. Let the incomes per month of two persons be ₹ x and $₹ y$ respectively. As each person saves $₹ 2000$ per month, so their expenditures are $₹(x-2000)$ and $₹(y-2000)$.
According to question, we have

$$
\frac{x}{y}=\frac{9}{7} \quad \text { i.e. } 72-9 y=0
$$

and

$$
\frac{x-2000}{y-2000}=\frac{4}{3} \quad \text { i.e. } 3 x-4 y+2000=0
$$

$\Rightarrow \quad 7 x-9 y=0$
and

$$
\begin{equation*}
3 x-4 y=-2000 \tag{1}
\end{equation*}
$$

On multiplying (1) by 3 and (2) by 7 respectively,

$$
\begin{equation*}
21 x-27 y=0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
21 x-28 y=-14000 \tag{4}
\end{equation*}
$$

Subtracting (4) from (3), we get

$$
y=14000
$$

Substituting $y=14000$ in (1), we get

$$
7 x-(9 \times 14000)=0
$$

$\Rightarrow \quad x=18000$
\therefore their monthly incomes are ₹ 14000 and ₹ 18000 .
28. Let x be the digit at ten's place and y be the digit at unit's place.

The number $=10 x+y$
The digit obtained by increasing the digit at ten's place by unity $=x+1$
According to the question,

$$
\begin{array}{rlrl}
& & x+y & =5 \\
\text { and } & x+1 & =\frac{1}{8}(10 x+y) \\
\Rightarrow & 8(x+1) & =10 x+y \\
\Rightarrow & 8 x+8 & =10 x+y \\
\Rightarrow & 2 x+y & =8
\end{array}
$$

Subtracting (1) from (2), we get $x=3$.
On substituting $x=3$ in (1), we get

$$
\begin{array}{rlrl}
& & 3+y & =5 \\
\Rightarrow & y & =2
\end{array}
$$

Hence, the required number is 32 .
29. Since the tangent to a circle is perpendicular to the radius through the point of contact.

$$
\begin{align*}
\therefore & \angle \mathrm{QSD} & =\angle \mathrm{OXD}=90^{\circ} \tag{1}\\
\angle \mathrm{D} & =90^{\circ} & \text { [Given] } \tag{2}\\
\therefore & \mathrm{OS} & =\mathrm{OR} \quad \text { [Radii of a circle] } \tag{3}\\
\therefore & \mathrm{OSDR} \text { is a square. } & {[\mathrm{Using}(1),(2) \text { and (3)] }} \tag{4}\\
\therefore & \mathrm{OS} & =\mathrm{SD}=\mathrm{DR}=\mathrm{OR}=10 \mathrm{~cm} \tag{5}
\end{align*}
$$

Since the tangents from an external point to a circle are equal.

$$
\begin{array}{rlrl}
\therefore \quad \mathrm{AB} & =\mathrm{BQ}=27 \mathrm{~cm} \\
\mathrm{QC} & =\mathrm{RC} \\
\therefore \quad \mathrm{QC} & =38 \mathrm{~cm}-27 \mathrm{~cm}=11 \mathrm{~cm} \\
& \mathrm{RC} & =11 \mathrm{~cm} \tag{6}\\
x & =\mathrm{CD}=\mathrm{DR}+\mathrm{RC} \\
& =10 \mathrm{~cm}+11 \mathrm{~cm} \\
& =21 \mathrm{~cm} .
\end{array}
$$

[From (5) \& (6)]
30. To prove:

$$
\begin{aligned}
& \qquad \begin{aligned}
& \sqrt{\frac{\sec \mathrm{A}-1}{\sec \mathrm{~A}+1}}+\sqrt{\frac{\sec \mathrm{A}+1}{\sec \mathrm{~A}-1}}=2 \operatorname{cosec} \mathrm{~A} \\
& \text { L.H.S: } \\
& \qquad \begin{aligned}
\sqrt{\frac{\sec \mathrm{A}-1}{\sec \mathrm{~A}+1}} & +\sqrt{\frac{\sec \mathrm{A}+1}{\sec \mathrm{~A}-1}} \\
& =\sqrt{\frac{(\sec \mathrm{A}-1)(\sec \mathrm{A}-1)}{(\sec \mathrm{A}+1)(\sec \mathrm{A}-1)}}+\sqrt{\frac{(\sec \mathrm{A}+1)(\sec \mathrm{A}+1)}{(\sec \mathrm{A}-1)(\sec \mathrm{A}+1)}} \\
& =\sqrt{\frac{(\sec \mathrm{A}+1)^{2}}{\sec ^{2} \mathrm{~A}-1}}+\sqrt{\frac{(\sec \mathrm{A}+1)^{2}}{\sec ^{2} \mathrm{~A}-1}} \\
& =\sqrt{\frac{(\sec \mathrm{A}-1)^{2}}{\tan ^{2} \mathrm{~A}}}+\sqrt{\frac{(\sec \mathrm{A}+1)^{2}}{\tan ^{2} \mathrm{~A}}} \\
& =\frac{\sec \mathrm{A}-1}{\tan \mathrm{~A}+\frac{\sec \mathrm{A}+1}{\tan \mathrm{~A}}} \\
& =\frac{\sec \mathrm{A}-1+\sec \mathrm{A}+1}{\tan \mathrm{~A}}
\end{aligned}
\end{aligned} . \begin{cases}2\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \sec A}{\tan A} \\
& =\frac{\frac{2}{\cos A}}{\frac{\sin A}{\cos A}}=\frac{2}{\sin A} \\
& =2 \operatorname{cosec} A=\text { RHS }
\end{aligned}
$$

Hence, proved.
or
30. Given $\quad \tan ^{4} \theta+\tan ^{2} \theta=1$
$\Rightarrow \quad \tan ^{2} \theta\left(\tan ^{2} \theta+1\right)=1$
$\Rightarrow \quad 1+\tan ^{2} \theta=\frac{1}{\tan ^{2} \theta}$
$\Rightarrow \quad \sec ^{2} \theta=\cot ^{2} \theta \quad\left[\because \sec ^{2} \theta=1+\tan ^{2} \theta\right]$
$\Rightarrow \quad \frac{1}{\cos ^{2} \theta}=\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$\Rightarrow \quad \sin ^{2} \theta=\cos ^{4} \theta$
$\Rightarrow \quad 1-\cos ^{2} \theta=\cos ^{4} \theta \quad\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\therefore \quad \cos ^{4} \theta+\cos ^{2} \theta=1$
Hence, proved.
31. (a)

$$
P(E)=\frac{\text { Number of favourable outcomes }}{\text { Number of possible outcomes }}
$$

$$
P(\text { Red })=\frac{7}{15}
$$

(b) $\quad \mathrm{P}($ Black or white $)=\frac{5+3}{15}=\frac{8}{15}$
(c) Probability of not black $=$ Probability of red and white

$$
P(\text { not black })=\frac{7+3}{15}=\frac{10}{15}=\frac{2}{3}
$$

Section - D

32. Let side of 1 st square be x metre and side of 2 nd square be y metre, and $x>y$. Then

$$
\begin{aligned}
\text { area of 1st square } & =x^{2} \mathrm{~m}^{2} \\
\text { area of 2nd square } & =y^{2} \mathrm{~m}^{2}, \\
\text { perimeter of 1st square } & =4 x \mathrm{~m} \\
\text { and perimeter of 2nd square } & =4 y \mathrm{~m}
\end{aligned}
$$

According to given conditions,

$$
\begin{equation*}
x^{2}+y^{2}=640 \tag{1}
\end{equation*}
$$

$$
\begin{array}{rlrl}
\text { and } & & 4 x-4 y & =64 \\
\Rightarrow & x-y & =16 \\
\Rightarrow & x & =y+16
\end{array}
$$

Substituting the value of x from (2) in (1), we get

$$
\begin{aligned}
& (y+16)^{2}+y^{2}=640 \\
& \Rightarrow \quad y^{2}+32 y+256+y^{2}=640 \\
& \Rightarrow \quad 2 y^{2}+32 y-384=0 \\
& \Rightarrow \quad y^{2}+16 y-192=0 \\
& \Rightarrow \quad y^{2}+24 y-8 y-192=0 \\
& \Rightarrow \quad y(y+24)-8(y+24)=0 \\
& \Rightarrow \quad(y-8)(y+24)=0 \\
& \Rightarrow \quad y-8=0 \text { or } y+24=0 \\
& y=8 \text {, or } \quad y=-24
\end{aligned}
$$

But y being side of a square cannot be negative.

$$
\therefore \quad y=8
$$

From (2), when $y=8, x=8+16=24$.
Hence, the sides of the two squares are 24 m and 8 m .

or

32. Let the speed of the stream be $x \mathrm{~km} / \mathrm{h}, 0<x<5$.

Speed of the boat upstream $=(5-x) \mathrm{km} / \mathrm{h}$
Speed of the boat downstream $=(5+x) \mathrm{km} / \mathrm{h}$
Time taken for going 5.25 km upstream $=\frac{5.25}{5-x} \mathrm{~h}$
Time taken for returning 5.25 km downstream $=\frac{5.25}{5+x} \mathrm{~h}$
According to given information,

$$
\begin{array}{rlrl}
& & \frac{5.25}{5-x}-\frac{5.25}{5+x} & =1 \\
\Rightarrow & & 5.25\left(\frac{1}{5-x}-\frac{1}{5+x}\right) & =1 \\
\Rightarrow & & \frac{525}{100}\left(\frac{1}{5-x}-\frac{1}{5+x}\right) & =1 \\
\Rightarrow & \frac{21}{4}\left(\frac{1}{5-x}-\frac{1}{5+x}\right) & =1 \\
\Rightarrow & \frac{21}{4}\left[\frac{5+x-5+x}{(5-x)(5+x)}\right] & =1 \\
\Rightarrow & & \frac{21}{4}\left[\frac{2 x}{25-x^{2}}\right] & =1
\end{array}
$$

$\Rightarrow \quad 42 x=4\left(25-x^{2}\right)$
$\Rightarrow \quad 4 x^{2}+42 x-100=0$
$\Rightarrow \quad 2 x^{2}+21 x-50=0$
$\Rightarrow \quad 2 x^{2}+25 x-4 x-50=0$
$\Rightarrow \quad x(2 x+25)-2(2 x+25)=0$
$\Rightarrow \quad(x-2)(2 x+25)=0$
$\Rightarrow \quad x-2=0$ or $2 x+25=0$
$\Rightarrow \quad x=2$ or $x=\frac{-25}{2}$ but $0<x<5$
$\Rightarrow \quad x=2$
Hence, the speed of the stream $=2 \mathrm{~km} / \mathrm{h}$
33. (a) It is given that,
DE \| BC
and

$$
\mathrm{AD}=x, \mathrm{DB}=x-2, \mathrm{AE}=x+2
$$

and

$$
\mathrm{EC}=x-1
$$

Consider $\triangle \mathrm{ABC}$,

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

[Theorem - If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other 2 sides are divided in the same ratio]
$\Rightarrow \quad \frac{x}{x-2}=\frac{x+2}{x-1}$
By cross-multiplication we get,

$$
\begin{array}{lrl}
\Rightarrow & x(x-1) & =(x-2)(x+2) \\
\Rightarrow & x^{2}-x & =x^{2}-4 \\
\Rightarrow & -x & =-4 \\
\Rightarrow & x & =4
\end{array}
$$

(b) $\mathrm{DB}=x-3, \mathrm{AB}=2 x, \mathrm{EC}=x-2$ and $\mathrm{AC}=2 x+3$

Consider $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
& \frac{\mathrm{AB}}{\mathrm{DB}}=\frac{\mathrm{AC}}{\mathrm{EC}} \\
& \Rightarrow \quad \frac{2 x}{x-3} \\
&=\frac{2 x+3}{x-2}
\end{aligned}
$$

By cross-multiplication,

$$
\begin{array}{rlrl}
\Rightarrow & & 2 x(x-2) & =(2 x+3)(x-3) \\
\Rightarrow & & 2 x^{2}-4 x & =2 x^{2}-6 x+3 x-9 \\
\Rightarrow & & 2 x^{2}-4 x-2 x^{2}+6 x-3 x & =-9 \\
\Rightarrow & & -x & =-9 \\
\Rightarrow & x & =9
\end{array}
$$

34. Radius of cylinder $=\frac{1}{2} \times 4 \mathrm{~cm}=2 \mathrm{~cm}$, and its height is 9 cm .
$\therefore \quad$ Volume of the cylinder $=\pi r^{2} h=\pi \times 2^{2} \times 9 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& =36 \pi \mathrm{~cm}^{3} \\
\text { Radius of the cone } & =\frac{1}{2} \times 6 \mathrm{~cm}=3 \mathrm{~cm}
\end{aligned}
$$

Let h be the height of the cone.
$\therefore \quad$ Volume of the cone $=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi \times 3^{2} \mathrm{~cm}^{2} \times h=3 \pi h \mathrm{~cm}^{2}$
Since the cylinder is melted and recasted into a cone,
Volume of the cone $=$ Volume of cylinder

$$
3 \pi h \mathrm{~cm}^{2}=36 \pi \mathrm{~cm}^{3} \Rightarrow h=12 \mathrm{~cm}
$$

$\therefore \quad$ The height of the cone $=12 \mathrm{~cm}$

$$
\begin{aligned}
\text { Slant height of the cone } & =\sqrt{r^{2}+h^{2}}=\sqrt{3^{2}+12^{2}} \\
& =\sqrt{153} \mathrm{~cm}=12.37 \mathrm{~cm}
\end{aligned}
$$

Total surface area of the cone $=\pi r(l+r)$

$$
\begin{aligned}
& =3.14 \times 3(12.37+3) \\
& =144.8 \mathrm{~cm}^{2}
\end{aligned}
$$

or

34. Radius of sphere $=\frac{12}{2} \mathrm{~cm}=6 \mathrm{~cm}$

$$
\text { Volume of sphere }=\frac{4}{3} \pi \times(6 \mathrm{~cm})^{3}
$$

Rise of water level in cylindrical vessel $=\frac{32}{9} \mathrm{~cm}$
Let $r \mathrm{~cm}$ be the radius of the base of the cylindrical vessel.
Volume of raised level of water in cylindrical vessel = Volume of sphere
Volume of raised level of water in cylindrical vessel $=\pi r^{2} \times \frac{32}{9}$

$$
\begin{aligned}
\Rightarrow & \pi r^{2} \times \frac{32}{9} & =\frac{4}{3} \pi \times 6^{3} \\
\Rightarrow & r^{2} & =\frac{4}{3} \times 216 \times \frac{9}{32} \\
\Rightarrow & r^{2} & =81 \\
\therefore & r & =9
\end{aligned}
$$

Hence, diameter of cylindrical vessel $=2 \times 9=18 \mathrm{~cm}$
35. Let the assumed mean be $a=13$

Class interval	f_{i}	Mid-value x_{i}	$u_{i}=\frac{\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{a}}{\boldsymbol{h}}$	$f_{i} u_{i}$
$1-5$	20	3	-2	-40
$6-10$	50	8	-1	-50
$11-15$	46	13	0	0
$16-20$	22	18	1	22
$21-25$	12	23	2	24
	150			-44

$$
\begin{aligned}
a & =13, \\
\text { Mean } & =a+h\left(\frac{\sum f_{i} u_{i}}{\sum f_{i}}\right) \\
& =13+5 \times\left(\frac{-44}{150}\right) \\
& =13-\frac{44}{30} \\
& =13-1.466 \\
& =11.534
\end{aligned}
$$

\therefore The mean of the number of tomatoes per plant $=11.53$

Section - E

36. Production in 6 th year or $a_{6}=16000$

Production in 9th year or $a_{9}=22600$

$$
\begin{array}{rlrl}
& & a_{9}-a_{6} & =(9-6) d \\
\Rightarrow & 22600-16000 & =3 d \\
\Rightarrow & & \left(a_{m}-a_{n}\right)=(m-n) d \\
\Rightarrow & & =6600 \\
\Rightarrow & d & =2200 \\
\Rightarrow & a_{9} & =a+8 d \\
\Rightarrow & 22600 & =a+8 \times 2200 \\
& 22600 & =a+17600 \\
& & a & =5000
\end{array}
$$

(a) Production in first year $=5000$ sets
(b) Production in 8th year,

$$
\begin{aligned}
& a_{8}=5000+(8-1) \times 2200 \\
& a_{8}=5000+15400 \\
& \Rightarrow \quad a_{8}=20400
\end{aligned}
$$

\therefore Production in 8th year is 20400 .

$$
\begin{aligned}
& \text { (c) } \\
& \mathrm{S}_{3}=\frac{3}{2}[2 \times 5000+(3-1) 2200] \\
& =\frac{3}{2}[10000+4400] \\
& \Rightarrow \quad S_{3}=\frac{3}{2} \times 14400=21600 \\
& \text { or }
\end{aligned}
$$

(c) Let the production be 29,200 sets in the nth year.

$$
\begin{aligned}
29200 & =5000+(n-1) \times 2200 \\
24200 & =2200 n-2200 \\
n & =\frac{26400}{2200}=12
\end{aligned}
$$

\therefore In 12th year, production of TV sets is 29200 .
37. (a) $(5,20)$
(b) On the 8th line, at a distance of 22.5 m along the breadth
(c) Coordinates of blue flag $=(11,25)$

Coordinates of yellow flag $=(5,20)$
\therefore Distance between blue and yellow flag:

$$
\because \quad d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

$$
\begin{aligned}
& =\sqrt{(5-11)^{2}+(20-25)^{2}} \\
& =\sqrt{(-6)^{2}+(-5)^{2}} \\
& =\sqrt{36+25}=\sqrt{61} \text { units } \\
& \quad \text { or }
\end{aligned}
$$

(c) Coordinates of yellow flag $=(5,20)$

Coordinates of green flag $=(8,22.5)$
\therefore Distance between yellow and green flag:

$$
\begin{aligned}
& \because d \\
&=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
&=\sqrt{(8-5)^{2}+(22.5-20)^{2}} \\
&=\sqrt{(3)^{2}+(2.5)^{2}} \\
&=\sqrt{9+\left(\frac{5}{2}\right)^{2}} \\
&=\sqrt{9+\frac{25}{4}}=\sqrt{\frac{36+25}{4}} \\
&=\sqrt{\frac{61}{4}}=\frac{\sqrt{61}}{2}
\end{aligned}
$$

38. (a) $\quad \angle \mathrm{PQR}=\theta$

$$
\cos \theta=\frac{\mathrm{RQ}}{\mathrm{PQ}}=\frac{12}{13}
$$

(b)

$$
\sec \theta=\frac{13}{12}\left[\sec \theta=\frac{1}{\cos \theta}\right]
$$

(c)

$$
\begin{aligned}
\mathrm{PR}^{2} & =\mathrm{PQ}^{2}-\mathrm{RQ}^{2} \\
& =13^{2}-12^{2} \\
& =169-144
\end{aligned}
$$

$$
\mathrm{PR}^{2}=25
$$

$$
\mathrm{PR}=5 \mathrm{~cm}
$$

$$
\tan \theta=\frac{P R}{R Q}
$$

$$
\tan \theta=\frac{5}{12}
$$

$$
\therefore \quad \frac{\tan \theta}{1+\tan ^{2} \theta}=\frac{\tan \theta}{\sec ^{2} \theta}=\frac{5}{12} \div\left(\frac{13}{12}\right)^{2}
$$

$$
=\frac{5}{12} \times \frac{12}{13} \times \frac{12}{13}=\frac{60}{169}
$$

or
(c) $\cot ^{2} \theta-\operatorname{cosec}^{2} \theta$

$$
\begin{aligned}
\cot \theta & =\frac{1}{\tan \theta}=\frac{12}{5} \\
\operatorname{cosec} \theta & =\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{13}{5} \\
\therefore \quad \cot ^{2} \theta-\operatorname{cosec}^{2} \theta & =\left(\frac{12}{5}\right)^{2}-\left(\frac{13}{5}\right)^{2} \\
& =\frac{144}{25}-\frac{169}{25}=\frac{-25}{25}=-1
\end{aligned}
$$

