Mathematics

Sample Question Paper

Basic (Code 241)

Time Allowed: 3 hours Maximum Marks: 80

General Instructions:

- 1. This Question Paper has 5 Sections A, B, C, D and E.
- 2. Section A has 20 Multiple-Choice Questions (MCQs) carrying 1 mark each.
- 3. Section B has 5 Short Answer-I (SA-I) type questions carrying 2 marks each.
- 4. Section C has 6 Short Answer-II (SA-II) type questions carrying 3 marks each.
- 5. Section D has 4 Long Answer (LA) type questions carrying 5 marks each.
- 6. Section E has 3 Case Based integrated units of assessment (4 marks each) with sub-parts of the values of 1, 1 and 2 marks each respectively.
- 7. All Questions are compulsory. However, an internal choice in 2 Questions of 2 marks, 2 Questions of 3 marks and 2 Questions of 5 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take $\pi = \frac{22}{7}$ wherever required if not stated.

Section - A

Section A consists of 20 questions of 1 mark each.

(c) coincident.

1. For some integer p, every odd integer is of the form

	(a) $2p + 1$	(b) 2p	(c) $p + 1$	(d) p			
2.	If the mode of some data is 7 and their mean is also 7 , then their median						
	(a) 10	(b) 9	(c) 7	(d) 8			
3.	Fig. If $p(x)$ is a polynomial of degree one and $p(a) = 0$, then a is said to be						
	(a) value of $p(x)$.		(b) zero of $p(x)$.				
	(c) constant of $p(x)$.		(d) none of these.				
4.	. The pair of equations $x = a$ and $y = b$ graphically represents lines where a						
	(a) parallel.		(b) intersecting at (b, a) .				

5. The decimal expansion of the number $\frac{17}{8}$ will terminate after how many places of decimals?

(*d*) intersecting at (*a*, *b*).

- (a) 4 (b) 3 (c) 2 (d) Will not terminate 6. The mid-point of a line segment joining two points A(2, 4) and B(-2, -4) is
- 6. The mid-point of a line segment joining two points A(2, 4) and B(-2, -4) is (a) (-2, 4). (b) (2, -4). (c) (0, 0). (d) (-2, -4).

7. If in two triangles ABC and PQR, $\frac{AB}{OR} = \frac{BC}{PR} = \frac{CA}{PO}$, then (b) $\triangle PQR \sim \triangle ABC$. (a) $\triangle PQR \sim \triangle CAB$. (c) $\triangle CBA \sim \triangle PQR$. (d) $\Delta BCA \sim \Delta PQR$. 8. If TP and TQ are the two tangents to a circle with centre O so that $\angle POQ = 110^{\circ}$, then $\angle PTQ$ is equal to Ρ 110° Q (a) 60° (b) 70° (c) 80° (d) 90° 9. The value of $(\sin 45^{\circ} + \cos 45^{\circ})$ is (c) $\frac{\sqrt{3}}{2}$ (a) $\frac{1}{\sqrt{2}}$ (b) $\sqrt{2}$ (d) 1 10. If \triangle ABC is right-angled at C, then the value of $\cos(A + B)$ is (a) $\frac{\sqrt{3}}{2}$ (c) $\frac{1}{2}$ (b) 1 (d) 011. Tangents from an external point to a circle are (b) not equal. (a) equal. (c) parallel. (d) perpendicular. 12. The distance between the points (0, 5) and (-5, 0) is (b) $5\sqrt{2}$ units. (c) $2\sqrt{5}$ units. (a) 5 units. (d) 10 units. 13. The area of the square that can be inscribed in a circle of radius 8 cm is (a) 256 cm^2 (b) 128 cm^2 (c) 642 cm^2 (d) 64 cm^2 14. If $x \tan 45^\circ \sin 30^\circ = \cos 30^\circ \tan 30^\circ$, then x is equal to (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{2}}$ (a) $\sqrt{3}$ (d) 1 15. Two identical solid cubes of side a are joined end to end. Then the total surface area of the resulting cuboid is (c) $10 a^2$ (a) $12 a^2$ (b) $8 a^2$ (d) $11 a^2$

(c) 3

(d) 4

16. If arithmetic mean of a, a + 3, a + 6, a + 9 and a + 12 is 10, then a is equal to

(b) 2

(a) 1

17. Consider the following frequency distribution:

Class	0-5	6 – 11	12 – 17	18 – 23	24 – 29
Frequency	13	10	115	8	11

The upper limit of the median class is

- (a) 17.5
- (b) 17
- (c) 18
- (d) 18.5

18. The probability that a non-leap year selected at random will contain 53 Sundays

- (a) $\frac{1}{7}$

- (b) $\frac{2}{7}$ (c) $\frac{3}{7}$ (d) $\frac{5}{7}$

Direction for Questions 19 and 20: In question numbers 19 and 20, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct option.

19. Assertion (A): In a circle of radius 6 cm, the angle of a sector is 60°. Then the area of the sector is $\frac{132}{7}$ cm².

Reason (R): Area of the circle with radius r is πr^2 .

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.
- 20. **Assertion:** For any two positive integers *p* and *q*,

 $HCF(p, q) \times LCM(p, q) = p \times q.$

Reason: If the HCF of two numbers is 5 and their product is 150, then their LCM is 40.

- (a) Both Assertion (A) and Reason (R) are true and Reason (R) is the correct explanation of Assertion (A).
- (b) Both Assertion (A) and Reason (R) are true but Reason (R) is not the correct explanation of Assertion (A).
- (c) Assertion (A) is true but Reason (R) is false.
- (d) Assertion (A) is false but Reason (R) is true.

Section - B

Section B consists of 5 questions of 2 marks each.

21. For which value of p does the pair of equations given below has a unique solution?

$$4x + py + 8 = 0$$

$$2x + 2y + 2 = 0$$

22. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that \triangle ABE ~ \triangle CFB.

or

In the figure given below, $OA \times OB = OC \times OD$. Show that $\angle A = \angle C$ and $\angle B = \angle D$.

- 23. Calculate the length of the chord which is at a distance of 6 cm from the centre of a circle of diameter 20 cm.
- 24. Given A is an acute angle and 13 sin A = 5, evaluate $\frac{5 \sin A 2 \cos A}{\tan A}$.
- 25. The circumference of a circle is 22 cm. Calculate the area of its quadrant (in cm²).

or

Area of a sector of a circle of radius 14 cm is 154 cm². Find the length of the corresponding arc of the sector. [Use $\pi = \frac{22}{7}$]

Section - C

Section C consists of 6 questions of $\bf 3$ marks each.

- 26. Prove that $\sqrt{3} + \sqrt{5}$ is an irrational number.
- 27. Find the roots of the equation $x^2 + x (a+2)(a+1) = 0$.
- 28. The ratio of income of two persons is 9 : 7 and the ratio of their expenditures is 4 : 3. If each of them manages to save ₹ 2000 per month, find their monthly incomes.

or

The sum of the digits of a two-digit number is 5. The digit obtained by increasing the digit at ten's place by unity is one-eighth of the number. Find the number.

29. In the given figure, quadrilateral ABCD is circumscribed and AD \perp DC. Find x if radius of incircle is 10 cm.

4

30. Prove:
$$\sqrt{\frac{\sec A - 1}{\sec A + 1}} + \sqrt{\frac{\sec A + 1}{\sec A - 1}} = 2 \csc A$$

01

If $\tan^4 \theta + \tan^2 \theta = 1$, prove that $\cos^4 \theta + \cos^2 \theta = 1$.

- 31. A bag contains 5 black, 7 red and 3 white balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is
 - (*a*) red.
 - (b) black or white.
 - (c) not black.

Section - D

Section D consists of 4 questions of 5 marks each.

32. The sum of the areas of two squares is 640 m². If the difference in their perimeters is 64 m, find the sides of the two squares.

Of

Sonal can row a boat at a speed of 5 km/h. If it takes her 1 hour more to row the boat 5.25 km upstream than to return downstream, find the speed of the stream.

- 33. In the given figure, DE || BC.
 - (a) If AD = x, DB = x 2, AE = x + 2 and EC = x 1, find the value of x.
 - (b) If DB = x 3, AB = 2x, EC = x 2 and AC = 2x + 3, find the value of x.

34. A solid cylinder of silver 9 cm high and 4 cm in diameter is melted and recast into a right-circular cone of diameter 6 cm. Find the height and the total surface area of the cone. Give your answer correct to one decimal place. (Take π = 3.14)

or

A sphere of diameter 12 cm is dropped in a right-circular cylindrical vessel, partly filled with water. If the sphere is completely submerged in water, the water level in the cylindrical vessel rises by $\frac{32}{9}$ cm. Find the diameter of the cylindrical vessel.

35. A study of yield of 150 tomato plants resulted in the following records:

Tomatoes per plant	1 – 5	6 – 10	11 – 15	16 – 20	21 – 25
Number of plants	20	50	46	22	12

Calculate the mean of the number of tomatoes per plant.

Section - E

Case study based questions are compulsory.

36. India is a competitive manufacturing location due to the low cost of manpower and strong technical and engineering capabilities contributing to higher quality production runs. The production of TV sets in a factory increases uniformly by a fixed number every year. It produced 16000 sets in the 6th year and 22600 in the 9th year.

Based on the above information, answer the following questions:

(a) Find the production during first year.

1 mark

(b) Find the production during 8th year.

1 mark

(c) Find the production during first 3 years.

2 marks

or

In which year, the production is 29,200 sets.

37. Students of class X are having their Sports Day on a rectangular shaped playground. 12 lines are drawn along the length and along the breadth of the rectangular shaped playground, 200 potatoes are kept at a distance of 1 m from each other. A student, Raju has been told to post a yellow flag on 5th line at distance of $\frac{1}{10}$ th of the breadth of the playground. Sanju has posted a blue flag on the 11th line at a distance of $\frac{1}{8}$ th of the breadth. At last, Anushka has posted her green flag exactly halfway between the line segment joining two flags.

Based on the given situation, answer the following questions.

- (a) What are the coordinates of the spot where Raju has posted his yellow flag? 1 mark
- (b) Where has the green flag been posted?

1 mark

(c) Find the distance between blue flag and yellow flag?

2 marks

or

What is the distance between yellow flag and green flag?

38. Anita, a student of class 10th, has to make a project on 'Introduction to Trigonometry'. She decides to make a birdhouse which is triangular in shape. She uses cardboard to make the birdhouse as shown in the figure. Considering the front side of birdhouse as right triangle PQR, right-angled at R, answer the following questions.

(a) If $\angle PQR = \theta$, then find $\cos \theta$.

1 mark

(b) Find the value of $\sec \theta$.

1 mark

(c) Find the value of $\frac{\tan \theta}{1 + \tan^2 \theta}$

2 marks

or

Find the value of $\cot^2 \theta - \csc^2 \theta$.