Sample Question Paper
 Standard (Code 041)

ANSWERS

Section - A

1. (c)
2. (a)
3. (c)
4. (b)
5. (d)
6. (a)
7. (b)
8. (d)
9. (b)
10. (c)
11. (c)
12. (c)
13. (a)
14. (a)
15. (c)
16. (c)
17. (a)
18. (b)
19. (c)
20. (b)

Section - B

21. We have,

$$
\begin{array}{rlrl}
& & \frac{3}{2} x-\frac{5}{3} y & =-2 \\
9 x-10 y & =-12 \\
& & \frac{1}{3} x+\frac{1}{2} y & =\frac{13}{6} \\
\Rightarrow & 2 x+3 y & =13 \tag{2}
\end{array}
$$

Multiplying eqn (1) by 3 and eqn (2) by 10, we get

$$
\Rightarrow \quad \begin{align*}
& 27 x-30 y=-36 \tag{4}\\
& 20 x+30 y=130 \tag{5}
\end{align*}
$$

Adding equations (4) and (5), we get

$$
47 x=94
$$

$$
\Rightarrow \quad x=\frac{94}{47}=2
$$

Putting value of $x=2$ in equation (1), we get

$$
\Rightarrow \begin{aligned}
9 \times 2-10 y & =-12 \\
-10 y & =-30 \\
\Rightarrow \quad y & =3
\end{aligned}
$$

22. In the figure, we have

$$
\begin{array}{rlr}
\mathrm{PA} & =\mathrm{PB} \quad \begin{array}{r}
\text { [Tangents drawn from external point } \\
\text { to a circle are equal in length] }
\end{array} \\
\angle \mathrm{APB} & =60^{\circ} \quad \\
\angle \mathrm{PAB} & =\angle \mathrm{PBA} \text { [Angles opposite to equal sides are equal] }
\end{array}
$$

In $\triangle \mathrm{PAB}$

$$
\begin{array}{lrl}
& \angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB} & =180^{\circ} \\
\Rightarrow & 2 \angle \mathrm{PAB}+60^{\circ} & =180^{\circ} \\
\Rightarrow & 2 \angle \mathrm{PAB} & =120^{\circ} \\
\Rightarrow & \angle \mathrm{PAB} & =60^{\circ} \\
\Rightarrow & \triangle \mathrm{PAB} \text { is an equilateral triangle } \\
\text { We have, } & \quad \mathrm{AP}=5 \mathrm{~cm} \\
\therefore \quad & \mathrm{AB}=\mathrm{AP}=5 \mathrm{~cm}
\end{array}
$$

\therefore Length of chord AB is 5 cm .
23. In $\Delta \mathrm{ABC}$, we have

EF || AC

$$
\begin{array}{rlrl}
\mathrm{BC}=10 \mathrm{~cm}, \mathrm{AB} & =13 \mathrm{~cm} \text { and } \mathrm{EC}=2 \mathrm{~cm} \\
& & \frac{\mathrm{BE}}{\mathrm{EC}} & =\frac{\mathrm{BF}}{\mathrm{AF}} \tag{ByB.P.T.}\\
\Rightarrow & \frac{\mathrm{BC}-\mathrm{EC}}{\mathrm{EC}} & =\frac{\mathrm{AB}-\mathrm{AF}}{\mathrm{AF}} \\
\Rightarrow & \frac{10-2}{2} & =\frac{13-\mathrm{AF}}{\mathrm{AF}} \\
\Rightarrow & \frac{8}{2} & =\frac{13-\mathrm{AF}}{\mathrm{AF}} \\
\Rightarrow & 8 \mathrm{AF} & =2(13-\mathrm{AF}) \\
\Rightarrow & 8 \mathrm{AF} & =26-2 \mathrm{AF} \\
\Rightarrow & 10 \mathrm{AF} & =26 \\
\Rightarrow & \mathrm{AF} & =2.6 \mathrm{~cm}
\end{array}
$$

24. The coordinates of the vertices of the given $\triangle \mathrm{ABC}$ are

$$
\begin{aligned}
\mathrm{A}\left(x_{1}=2, y_{1}=3\right), \mathrm{B}\left(x_{2}\right. & \left.=-2, y_{2}=1\right) \text { and } \mathrm{C}\left(x_{3}=3, y_{3}=-2\right) \\
\text { Area of } \triangle \mathrm{ABC} & =\frac{1}{2}\left|\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]\right| \\
& =\frac{1}{2}|[2(1+2)+(-2)(-2-3)+3(3-1)]| \text { sq units } \\
& =\frac{1}{2}|[2(3)-2(-5)+3(2)]| \\
& =\frac{1}{2}|[6+10+6]| \\
& =\frac{1}{2}(22)=11 \text { sq units }
\end{aligned}
$$

Hence, the area of the triangle is 11 sq units.
or
24. Let the points $(3,-1),(5,3)$ and $(7,-3)$ be denoted by A, B and C respectively. Let D, E and F be the mid-points of AC, BC and BA respectively.

The coordinates of D, E and F respectively are

$$
\mathrm{D}\left(\frac{3+7}{2}, \frac{-1-3}{2}\right), \mathrm{E}\left(\frac{5+7}{2}, \frac{3-3}{2}\right) \text { and } \mathrm{F}\left(\frac{5+3}{2}, \frac{3-1}{2}\right)
$$

i.e. $\mathrm{D}(5,-2), \mathrm{E}(6,0), \mathrm{F}(4,1)$
\therefore The medians BD, CF and AE are given by

$$
\begin{aligned}
& \mathrm{BD}=\sqrt{(5-5)^{2}+(-2-3)^{2}}=\sqrt{0^{2}+(-5)^{2}}=\sqrt{25}=5 \text { units } \\
& \mathrm{CF}=\sqrt{(4-7)^{2}+(1+3)^{2}}=\sqrt{(-3)^{2}+(4)^{2}}=\sqrt{9+16}=\sqrt{25}=5 \text { units } \\
& \mathrm{AE}=\sqrt{(6-3)^{2}+(0+1)^{2}}=\sqrt{(3)^{2}+(1)^{2}}=\sqrt{9+1}=\sqrt{10} \text { units }
\end{aligned}
$$

Hence, length of the medians are 5 units, 5 units and $\sqrt{10}$ units.
25. Given: $x=a \cos \theta-b \sin \theta, y=a \sin \theta+b \cos \theta$

$$
\begin{aligned}
x^{2}+y^{2}= & (a \cos \theta-b \sin \theta)^{2}+(a \sin \theta+b \cos \theta)^{2} \\
= & a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta-2 a b \sin \theta \cos \theta+a^{2} \sin ^{2} \theta \\
& \quad+b^{2} \cos ^{2} \theta+2 a b \sin \theta \cos \theta \\
= & a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+a^{2} \sin ^{2} \theta+b^{2} \cos \theta \\
= & a^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+b^{2}\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
= & a^{2}+b^{2} \quad\left[\because \cos ^{2} \theta+\sin ^{2} \theta=1\right]
\end{aligned}
$$

Hence, proved.
or
25. Given: $\tan \theta=\frac{a}{b}$
L.H.S. $\quad \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}$

Dividing numerator and denominator by $b \cos \theta$

$$
\begin{aligned}
\frac{\frac{a \sin \theta}{b \cos \theta}-\frac{b \cos \theta}{b \cos \theta}}{\frac{a \sin \theta}{b \cos \theta}+\frac{b \cos \theta}{b \cos \theta}} & =\frac{\frac{a}{b} \tan \theta-1}{\frac{a}{b} \tan \theta+1} \\
& =\frac{\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)-1}{\left(\frac{a}{b}\right)\left(\frac{a}{b}\right)+1}=\frac{\frac{a^{2}}{b^{2}}-1}{\frac{a^{2}}{b^{2}}+1} \quad\left[\because \tan \theta=\frac{a}{b}\right] \\
& =\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\text { R.H.S }
\end{aligned}
$$

Hence, proved.

Section - C

26. Let $6+7 \sqrt{5}$ be rational. Then, there exist coprime a and $b(b \neq 0)$, such that

$$
\begin{array}{lrl}
\Rightarrow & 6+7 \sqrt{5} & =\frac{a}{b}, \quad a \text { and } b \text { are integers } \\
\Rightarrow & 7 \sqrt{5} & =\frac{a}{b}-6 \\
\Rightarrow & 7 \sqrt{5} & =\frac{a-6 b}{b} \\
\Rightarrow & \sqrt{5} & =\frac{a-6 b}{7 b}
\end{array}
$$

Since, a and b are integers
$\therefore \quad \frac{a-6 b}{7 b}$ is an integer
$\Rightarrow \sqrt{5}$ is a rational, which is a contradiction because $\sqrt{5}$ is an irrrational.
Hence, our asumption is wrong. $\therefore 6+7 \sqrt{5}$ is an irrational number.
27. Let

$$
p(y)=6 y^{2}-7 y+2
$$

α and β are zeroes of the above polynomial.
Here, $a=6, b=-7$ and $c=2$.
$\Rightarrow \quad$ Sum of the roots $=\alpha+\beta=\frac{-b}{a}=\frac{-(-7)}{6}=\frac{7}{6}$

$$
\text { Product of zeroes }=\alpha \beta=\frac{c}{a}=\frac{2}{6}=\frac{1}{3}
$$

We are required to find quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

$$
\begin{aligned}
\text { Sum of zeroes } & =\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{7 \times 3}{6 \times 1}=\frac{7}{2} \\
\text { Product of zeroes } & =\frac{1}{\alpha} \times \frac{1}{\beta}=\frac{1}{\alpha \beta}=\frac{1}{\frac{1}{3}}=3
\end{aligned}
$$

Polynomial $p(x)=x^{2}-($ Sum of zeroes $) x+$ product of zeroes
$\Rightarrow \quad p(x)=x^{2}-\frac{7 x}{2}+3$
28. Let the present ages of two children be x and y.

Then according to question:
Present age of father $=2(x+y)$
After 20 years,
Ages of the children $=x+20$ and $y+20$
Age of the father $=2(x+y)+20$
\Rightarrow According to Question:
Age of the father $=$ Sum of the ages of the two children

$$
2(x+y)+20=(x+20)+(y+20)
$$

Father's age will be $2(x+y)=2(20)=40$ years

or

28. Let fixed charge be ₹ x and charge for distance covered by $₹ y / \mathrm{km}$.

According to the questionn,

$$
\begin{align*}
& x+13 y=129 \tag{1}\\
& x+22 y=210 \tag{2}
\end{align*}
$$

Subtracting equation (1) from equation (2), we get

$$
\begin{array}{ll}
& 9 y \\
\therefore & y 1 \\
\therefore & y
\end{array}=\frac{81}{9}=9
$$

Putting $y=9$ in (1) we get

$$
\begin{array}{rlrl}
& & x+13(9) & =129 \\
\Rightarrow \quad & x & =129-117=12
\end{array}
$$

\therefore For travelling 32 km , a person will have to pay $=₹(x+32 y)$

$$
=₹[12+32(9)]=₹ 300
$$

29.

$$
\begin{equation*}
\sec \theta-\tan \theta=x \tag{1}
\end{equation*}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{(\sec \theta-\tan \theta)}{(\sec \theta+\tan \theta)} \times(\sec \theta+\tan \theta)=x \\
\Rightarrow & \frac{\sec ^{2} \theta-\tan ^{2} \theta}{\sec \theta+\tan \theta}=x \\
\Rightarrow & \frac{1}{\sec \theta+\tan \theta}=x \\
\Rightarrow & \sec \theta+\tan \theta=\frac{1}{x} \tag{2}
\end{array}
$$

$$
\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]
$$

Hence, proved.
Adding equations (1) and (2)

$$
\Rightarrow \quad \begin{aligned}
2 \sec \theta & =x+\frac{1}{x} \\
\Rightarrow \quad \sec \theta & =\frac{x^{2}+1}{2 x} \\
\cos \theta & =\frac{2 x}{x^{2}+1} \\
\sin ^{2} \theta & =1-\cos ^{2} \theta \\
& =1-\frac{4 x^{2}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}+1\right)^{2}-4 x^{2}}{\left(x^{2}+1\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad 2 x+2 y+20=x+y+40 \\
& \Rightarrow \quad x+y=20
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x^{4}+1+2 x^{2}-4 x^{2}}{\left(x^{2}+1\right)^{2}} \\
& =\frac{x^{4}-2 x^{2}+1}{\left(x^{2}+1\right)^{2}} \\
& =\frac{\left(x^{2}-1\right)^{2}}{\left(x^{2}+1\right)^{2}} \\
\Rightarrow \quad \sin ^{2} \theta & =\frac{\left(x^{2}-1\right)^{2}}{\left(x^{2}+1\right)^{2}} \\
\Rightarrow \quad \sin \theta & =\frac{x^{2}-1}{x^{2}+1}
\end{aligned}
$$

30. Let number of black balls be x.
$\Rightarrow \quad$ Number of white balls $=15$

$$
\begin{aligned}
\text { Total balls } & =x+15 \\
\mathrm{P}(\text { getting a black ball }) & =\frac{x}{x+15} \\
\mathrm{P}(\text { getting a white ball }) & =\frac{15}{x+15}
\end{aligned}
$$

According to the question,

$$
\begin{aligned}
& & \frac{x}{x+15} & =3\left(\frac{15}{x+15}\right) \\
\Rightarrow & & x & =45
\end{aligned}
$$

\therefore There are 45 black balls.
31. Since the tangent to a circle is perpendicular to the radius through the point of contact.

$$
\begin{equation*}
\therefore \quad \angle \mathrm{OQB}=\angle \mathrm{OPB}=90^{\circ} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\angle B=90^{\circ} \quad[\text { Given }] \tag{o}
\end{equation*}
$$

$$
\mathrm{OQ}=\mathrm{OP}=r \quad[\text { Radii of a circle }]
$$

\therefore OQBP is a square.
[Using (1), (2) and (3)]

Since the tangents from an external point to a circle are equal

\therefore	$A Q=A R \quad[$ Tangents from A] ... (5)		
and	$\mathrm{DR}=\mathrm{DS}$	[Tangents from D]	
Now,	$\mathrm{DR}=\mathrm{DS}[$ From (5)] \Rightarrow	DR $=5 \mathrm{~cm}$	
\Rightarrow	$\mathrm{AD}-\mathrm{AR}=5 \mathrm{~cm}$	$23 \mathrm{~cm}-\mathrm{AR}=5 \mathrm{~cm}$	
\Rightarrow	$\mathrm{AR}=(23-5) \mathrm{cm} \quad \Rightarrow$	$\mathrm{AR}=18 \mathrm{~cm}$	
\Rightarrow	$A Q=18 \mathrm{~cm}$		[Using (5)]
\Rightarrow	$\mathrm{AB}-\mathrm{BQ}=18 \mathrm{~cm}$		

$$
\begin{array}{cc}
\Rightarrow & 29 \mathrm{~cm}-\mathrm{BQ}=18 \mathrm{~cm} \\
\Rightarrow & \mathrm{BQ}=(29-18) \mathrm{cm} \\
\Rightarrow & \mathrm{BQ}=11 \mathrm{~cm} \tag{6}\\
& \text { OQBP is a square }
\end{array}
$$

$\therefore \quad$ Its sides OQ and BQ are equal
$\Rightarrow \quad$ Radius $\mathrm{OQ}=\mathrm{BQ}=11 \mathrm{~cm}$
Hence, the radius (r) of the circle is 11 cm .
or
31. Let $A B C D$ be a parallelogram circumscribing a circle with centre O.

$$
\begin{align*}
\mathrm{AP} & =\mathrm{AS} \tag{1}\\
\mathrm{BP} & =\mathrm{BQ} \tag{2}\\
\mathrm{CR} & =\mathrm{CQ} \tag{3}\\
\mathrm{DR} & =\mathrm{DS} \tag{4}
\end{align*}
$$

[Tangents drawn to a circle from an exterior point are equal in length] Adding (1), (2), (3), and (4) we get

$$
\begin{align*}
\mathrm{AP}+\mathrm{BP}+\mathrm{CR}+\mathrm{DR} & =\mathrm{AS}+\mathrm{BQ}+\mathrm{CQ}+\mathrm{DS} \\
\mathrm{AB}+\mathrm{CD} & =\mathrm{AD}+\mathrm{BC} \tag{5}
\end{align*}
$$

Since $A B C D$ is a parallelogram
\therefore

$$
\mathrm{AB}=\mathrm{CD} \text { and } \mathrm{AD}=\mathrm{BC}
$$

from (5) we get

$$
\begin{aligned}
2 \mathrm{AB} & =2 \mathrm{AD} \\
\mathrm{AB} & =\mathrm{AD} \\
\therefore \quad \mathrm{AB}=\mathrm{AD} & =\mathrm{BC}=\mathrm{DC}
\end{aligned}
$$

Since a parallelogram with all sides equal is a rhombus.
Thus, ABCD is a rhombus.

Section - D

32. Let length be x units and breadth be y units.
$\Rightarrow \quad$ Area of the rectangle $=x y$ sq units.
According to the question,

$$
\begin{aligned}
& \\
& (x+2)(y-2)
\end{aligned}=x y-28, ~=x y-28
$$

$\Rightarrow \quad-2 x+2 y+24=0$
$\Rightarrow \quad 2 x-2 y=24$
Also,

$$
\begin{array}{rlrl}
& & (x-1)(y+2) & =x y+33 \tag{1}\\
\Rightarrow & x y+2 x-y-2 & =x y+33 \\
\Rightarrow & 2 x-y & =35
\end{array}
$$

Subtracting equation (2) from equation (1), we get

$$
\begin{aligned}
-y & =11 \\
\therefore \quad y & =11 \text { units }
\end{aligned}
$$

Putting $y=11$ in eqn. (2),

$$
\begin{aligned}
2 x-11 & =35 \\
2 x & =46 \\
x & =\frac{46}{2}=23
\end{aligned}
$$

$\therefore \quad$ Length of rectangle $=23$ units
breadth of rectangle $=11$ units
$\therefore \quad$ Area of the rectangle $=l \times b$

$$
=23 \times 11=253 \text { sq units }
$$

or
32. Let the two numbers be x and y respectively.

According to the question

$$
\begin{equation*}
x+y=1000 \tag{1}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\left(x^{2}-y^{2}\right)=144000 \tag{2}
\end{equation*}
$$

Solving eqn (2),
$\Rightarrow \quad(x-y)(x+y)=144000$
$\Rightarrow \quad(1000)(x-y)=144000$
[From eqn (1)]
$\Rightarrow \quad x-y=144$
Adding eqns (1) and (3) we get

$$
\begin{aligned}
& & 2 x & =144+1000 \\
\Rightarrow & & 2 x & =1144 \\
\therefore & & x & =572
\end{aligned}
$$

Putting the value of $x=572$ in eqn (1), we get

$$
\Rightarrow \quad \begin{aligned}
572+y & =1000 \\
y & =1000-x \\
& =1000-572 \\
& =428
\end{aligned}
$$

Hence, the two numbers are 572 and 428.
33. GIVEN: $\triangle \mathrm{ABC}$ in which $\mathrm{DE} \| \mathrm{BC}$ and DE intersects AB at D and AC at E .
TO PROVE:

$$
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}
$$

CONSTRUCTION: Join BE, CD and draw $\mathrm{EF} \perp \mathrm{AB}, \mathrm{DN} \perp \mathrm{AC}$.
$\begin{array}{ll}\text { PROOF: } & \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{BDE})}=\frac{\frac{1}{2} \times \mathrm{AD} \times \mathrm{EF}}{\frac{1}{2} \times \mathrm{BD} \times \mathrm{EF}}=\frac{\mathrm{AD}}{\mathrm{BD}} \\ \text { and } \quad & \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\triangle \mathrm{CDE})}=\frac{\frac{1}{2} \times \mathrm{AE} \times \mathrm{DN}}{\frac{1}{2} \times \mathrm{EC} \times \mathrm{DN}}=\frac{\mathrm{AE}}{\mathrm{EC}}\end{array}$

But $\triangle \mathrm{BDE}$ and $\triangle \mathrm{CDE}$ are on the same base DE and between the same parallels DE and BC.

```
\(\therefore \quad \operatorname{ar}(\triangle \mathrm{BDE})=\operatorname{ar}(\triangle \mathrm{CDE})\)
\(\therefore \quad \frac{\operatorname{ar}(\triangle \mathrm{ADE})}{\operatorname{ar}(\Delta \mathrm{BDE})}=\frac{\operatorname{ar}(\Delta \mathrm{ADE})}{\operatorname{ar}(\Delta \mathrm{CDE})} \quad\) [Using (3)]
Hence,
Hence,
\[
\begin{equation*}
\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}} \tag{4}
\end{equation*}
\]
[From (1), (2) and (4)]
```


$$
\begin{array}{rlrl}
& & \frac{\mathrm{AE}}{\mathrm{EC}} & =\frac{\mathrm{AD}}{\mathrm{DB}} \quad \text { [By Basic Proportionality theorem] } \\
\Rightarrow & \frac{8}{2} & =\frac{\mathrm{AD}}{6} \\
\Rightarrow & \mathrm{AD} & =24 \mathrm{~cm}
\end{array}
$$

34. Radius of cylindrical tank, $r=\frac{2}{2} \mathrm{~m}=1 \mathrm{~m}$

Height of cylindrical tank, $h=5 \mathrm{~m}$
Volume of cylindrical tank,

$$
V=\pi r^{2} h=\frac{22}{7} \times(1)^{2} \times 5 \mathrm{~m}^{3}=\frac{22}{7} \times 5 \mathrm{~m}^{3}
$$

Length of the park, $l=25 \mathrm{~m}$

$$
\text { Breadth, } b=20 \mathrm{~m}
$$

Let h be height of standing water in the park
\Rightarrow Volume of cylindrical tank $=$ Volume of water in the park
$\Rightarrow \quad \frac{22}{7} \times 5=l \times b \times h$

$$
\begin{aligned}
& =25 \times 20 \times h \\
\Rightarrow \quad h & =\frac{22 \times 5}{7 \times 25 \times 20} \\
& =\frac{11}{350}=0.031 \mathrm{~m}
\end{aligned}
$$

Hence, height of standing water in the park is 0.031 m .
or
34. \quad Radius of the tent $=\frac{30}{2}=15 \mathrm{~m}$

Height of cylindrical part $=5.5 \mathrm{~m}$

$$
\text { Height of conical part }=8.25 \mathrm{~m}-5.5 \mathrm{~m}
$$

$$
=2.75 \mathrm{~m}
$$

Slant height of the conical part,

$$
\begin{aligned}
l & =\sqrt{r^{2}+h^{2}} \\
& =\sqrt{(2.75)^{2}+(15)^{2}} \\
& =\sqrt{\left(\frac{11}{4}\right)^{2}+(15)^{2}}=\sqrt{\frac{121}{16}+225} \\
& =\sqrt{\frac{3721}{16}}=\frac{61}{4} \mathrm{~m}
\end{aligned}
$$

Total surface area of the tent $=$ CSA of cylindrical part + CSA of conical part

$$
\begin{aligned}
& =2 \pi r h+\pi r l \\
& =\pi r+(2 h+l) \\
& =\frac{22}{7} \times 15\left(2 \times \frac{11}{2}+\frac{61}{4}\right) \\
& =\frac{22}{7} \times 15\left(11+\frac{61}{4}\right) \\
& =\frac{22}{7} \times 15\left(\frac{44+61}{4}\right) \\
& =\frac{22}{7} \times 15 \times \frac{105}{4}=\frac{2475}{2} \mathrm{~m}^{2}
\end{aligned}
$$

Area of canvas used $=\frac{2475}{2} \mathrm{~m}^{2}$
Length of canvas used $=\frac{\text { Area of canvas }}{\text { Breadth of canvas }}$
$=\frac{2475}{2 \times 1.5}=825 \mathrm{~m}$
35. We prepare the cumulative frequency table, as given below.

Class Interval	Frequency f_{i}	Cumulative frequency (cf)
$0-10$	5	5
$10-20$	x	$5+x$
$20-30$	6	$11+x$
$30-40$	y	$11+x+y$
$40-50$	6	$17+x+y$
$50-60$	5	$22+x+y$

Since, the total number of observations is 40 ,

$$
\begin{array}{ll}
\therefore & 22+x+y=40 \\
\Rightarrow & x+y=18 \tag{1}
\end{array}
$$

Median is 31 . So median class is $30-40$

$$
\begin{array}{rlrl}
l=30, c f & =11+x, f=y \text { and } h=10 \\
& & \text { Median } & =l+\frac{\left[\frac{n}{2}-c f\right] \times h}{f} \\
\Rightarrow & 31 & =30+\left(\frac{20-(11+x)}{y}\right) \times 10 \\
\Rightarrow & 31-30 & =\frac{20-11-x}{y} \times 10 \\
\Rightarrow & \frac{1}{10} & =\frac{9-x}{y} \\
\Rightarrow & y & =90-10 x \tag{2}
\end{array}
$$

Putting the value of y in eqn (1), we get

$$
\begin{aligned}
x+90-10 x & =18 \\
-9 x & =-72 \\
x=\frac{72}{9} & =8 \\
\therefore \quad y & =90-10 x \\
& =90-80 \\
& =10
\end{aligned}
$$

Hence, the values of x and y are 8 and 10 respectively.

Section - E

36. (a) Total length of silver wire required

$$
\begin{aligned}
& =\text { Circumference }+4 d \\
& =2 \pi r+4 d
\end{aligned}
$$

$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 14 \mathrm{~mm}+4 \times 28 \mathrm{~mm} \\
& =88+112=200 \mathrm{~mm}
\end{aligned}
$$

(b)

$$
\theta=45^{\circ}
$$

$$
\begin{aligned}
\text { Area of sector } & =\frac{\theta}{360^{\circ}} \times \pi r^{2} \\
& =\frac{45}{360} \times \frac{22}{7} \times 14 \times 14 \mathrm{~mm}^{2} \\
& =77 \mathrm{~mm}^{2}
\end{aligned}
$$

(c) Let the number of revolutions $=x$

Number of revolutions \times circumference $=112 \pi$

$$
\begin{aligned}
\Rightarrow \quad x \times 2 \pi r & =112 \pi \\
x & =\frac{112 \pi}{2 \pi r}=\frac{112}{2 \times 14}=4
\end{aligned}
$$

$\therefore \quad$ Number of revolutions $=4$

or

(c) The circumference of silver part $=44 \mathrm{~mm}$

$$
\text { Let radius of silver part }=r_{1}
$$

$$
\therefore \quad \begin{aligned}
2 \pi r_{1} & =44 \mathrm{~mm} \\
r_{1} & =\frac{44 \times 7}{2 \times 22} \mathrm{~mm} \\
r_{1} & =7 \mathrm{~mm}
\end{aligned}
$$

The gold part is 3 mm wide everywhere.
\therefore Radius of brooch $B=7 \mathrm{~mm}+3 \mathrm{~mm}=10 \mathrm{~mm}$
Number of revolutions \times Circumference $=80 \pi$

$$
\begin{aligned}
\Rightarrow & x \times 2 \pi r & =80 \pi \\
\Rightarrow & x & =\frac{80 \pi}{2 \pi r}=\frac{80 \pi}{2 \pi \times 10}=4
\end{aligned}
$$

$\therefore \quad$ Number of revolutions $=4$
37. (a) The time taken to run 200 m forms the following series.

$$
51,49,47,45, \ldots
$$

In the above series

$$
a_{2}-a_{1}=a_{3}-a_{2}=d
$$

$\therefore \quad$ It is an AP.
(b) The nth term of an AP is given by

$$
\therefore \quad \begin{aligned}
a_{n} & =2 n+3 \\
a_{1} & =2 \times 1+3=5 \\
a_{2} & =2 \times 2+3=7 \\
\text { Common difference, } d & =a_{2}-a_{1}=7-5=2
\end{aligned}
$$

$$
\begin{aligned}
(c) & a_{n} & =a+(n-1) d \\
\Rightarrow & 31 & =51+(n-1)(-2) \\
\Rightarrow & 31-51 & =-2 n+2 \\
\Rightarrow & -20 & =-2 n+2 \\
\Rightarrow & -20-2 & =-2 n \\
\Rightarrow & -22 & =-2 n \\
\Rightarrow & 11 & =n
\end{aligned}
$$

He needs to practice for 11 days.

or

(c)

$$
n=9, . a_{n}=31, a=51
$$

We need to find d.

$$
\begin{aligned}
& & 31 & =51+(9-1) d \\
\Rightarrow & & 31-51 & =(9-1) d \\
\Rightarrow & & -20 & =8 d \\
\Rightarrow & & \frac{-20}{8} & =d \\
& & d & =2.5
\end{aligned}
$$

He should reduce 2.5 s each day.
38. (a) Angle of Depression
(b)

$$
\tan 60^{\circ}=\frac{42}{d}
$$

\Rightarrow

$$
d=\frac{42}{\sqrt{3}}
$$

$$
=\frac{42 \sqrt{3}}{3}
$$

$$
=14 \sqrt{3} \mathrm{~m}
$$

(c)

$$
\tan 60^{\circ}=\frac{h}{d}
$$

$$
\begin{aligned}
\Rightarrow \quad \sqrt{3} & =\frac{h}{20} \\
h & =20 \sqrt{3} \mathrm{~m}
\end{aligned}
$$

or

$$
\begin{aligned}
\text { (c) } & & \tan \theta & =\frac{h}{d} \\
\Rightarrow & & \tan \theta & =\frac{42}{42} \\
\Rightarrow & & \tan \theta & =1 \\
\Rightarrow & & \theta & =45^{\circ}
\end{aligned}
$$

