Mathematics

10

Sample Question Paper

Standard (Code 041)

ANSWERS

Section - A

1.	(<i>b</i>)	2.	(<i>c</i>) 3.	(C)
4.	(<i>b</i>)	5.	(<i>a</i>) 6.	(a)
7.	(<i>b</i>)	8.	(<i>d</i>) 9.	(C)
10.	(<i>a</i>)	11.	(<i>d</i>) 12.	(C)
13.	(<i>b</i>)	14.	(<i>a</i>) 15.	(<i>d</i>)
16.	(<i>b</i>)	17.	(<i>a</i>) 18.	(C)
19.	(<i>d</i>)	20.	(<i>b</i>)	

Section - B

21. Let us assume on the contrary that $\sqrt{7} - \sqrt{2}$ is a rational number. Then, there exist coprime *a* and *b* (*b* \neq 0), such that

$$\sqrt{7} - \sqrt{2} = \frac{a}{b} \implies \frac{a}{b} + \sqrt{2} = \sqrt{7}$$

$$\Rightarrow \qquad \left(\frac{a}{b} + \sqrt{2}\right)^2 = (\sqrt{17})^2 \implies \frac{a^2}{b^2} + \frac{2a\sqrt{2}}{b} + 2 = 7$$

$$\Rightarrow \qquad \frac{a^2}{b^2} - 5 = \frac{-2a\sqrt{2}}{b} \implies \frac{a^2 - 5b^2}{b^2} = \frac{-2a\sqrt{2}}{b}$$

$$\Rightarrow \qquad \frac{a^2 - 5b^2}{2ab} = -\sqrt{2} \implies \sqrt{2} \text{ is a rational number.}$$

This contradicts the fact that $\sqrt{2}$ is irrational.

So, our assumption is wrong.

Hence, $\sqrt{7} - \sqrt{2}$ is irrational.

22. In $\triangle PST$ and $\triangle RQT$,

...

 \Rightarrow

$$\angle PTS = \angle QTR \qquad [Vertically opp. \angle s]$$

$$\angle PST = \angle RQT \qquad [PS || QR, alternate angles]$$

$$\Delta PST \sim \Delta RQT \qquad [By AA criterion of similarity]$$

$$\frac{PS}{ST} = \frac{RQ}{TQ} \Rightarrow \frac{18}{13} = \frac{36}{TQ} \Rightarrow TQ = 26 \text{ cm}$$

In \triangle QUT and \triangle QPS,

	$\angle QUT = \angle QPS$	[Corresponding angles, TU PS]
	$\angle QTU = \angle QSP$	[Corresponding angles, TU \parallel PS]
.:.	$\Delta QUT \sim \Delta QPS$	[By AA criterion of similarity]
<i>.</i>	$\frac{\mathrm{QT}}{\mathrm{QS}} = \frac{\mathrm{UT}}{\mathrm{PS}} \Rightarrow $	$\frac{26}{39} = \frac{\text{UT}}{18} \qquad [\text{QS} = \text{ST} + \text{QT}]$
\Rightarrow	UT = 12 cm	

Hence, TQ = 26 cm and UT = 12 cm.

23. Since the tangent at any point of a circle is perpendicular to the radius through the point of contact, therefore CQ \perp XZ and CP \perp XY

\Rightarrow	$\angle X = \angle CPX = \angle CQX = 90^{\circ}$	
	CP = XQ = XP = r	[Radius of circle]
Now,	ZQ = ZR = XZ - XQ = (16 cm - r))(1)
	YR = YP = XY - XP = (12 cm - r)	(2)
	YZ = ZR + YR = 16 cm - r + 12 cm	m - r = 28 cm - 2r
	[Usi	ing (1) and (2)](3)
	Y R Z	
Now,	$YZ^2 = XZ^2 + XY^2$	
\Rightarrow	$(28 \text{ cm}-2r)^2 = 16^2 \text{ cm}^2 + 12^2 \text{ cm}^2$	[Using (3)]
\Rightarrow	$(28 \text{ cm} - 2r)^2 = 20^2 \text{ cm}^2$	
\Rightarrow	$28 \text{ cm} - 2r = 20 \text{ cm} \implies r = 4 \text{ cm}$	
Hence, $r = 4$ cm	n.	

or

Let side BC of isosceles $\triangle ABC$ touch circle at D.

Given:

2

© Ratna Sagar P. Ltd., 2023

To prove:

Proof: Since the lengths of tangents drawn from an external point to circle are equal,

Hence, BC is bisected at point of contact.

24.
$$\operatorname{cosec} \theta - \sin \theta = p$$
 and $\operatorname{sec} \theta - \cos \theta = q$ [Given]

$$\Rightarrow \frac{1}{\sin \theta} - \sin \theta = p$$
 and $\frac{1}{\cos \theta} - \cos \theta = q$

$$\Rightarrow \frac{1 - \sin^2 \theta}{\sin \theta} = p$$
 and $\frac{1 - \cos^2 \theta}{\cos \theta} = q$

$$\Rightarrow \frac{\cos^2 \theta}{\sin \theta} = p$$
 and $\frac{\sin^2 \theta}{\cos \theta} = q$
LHS = $p^{4/3} q^{2/3} + p^{2/3} q^{4/3}$

$$= \left(\frac{\cos^2 \theta}{\sin \theta}\right)^{4/3} \left(\frac{\sin^2 \theta}{\cos \theta}\right)^{2/3} + \left(\frac{\cos^2 \theta}{\sin \theta}\right)^{2/3} \left(\frac{\sin^2 \theta}{\cos \theta}\right)^{4/3}$$

$$= \frac{(\cos \theta)^{8/3 - 2/3}}{(\sin \theta)^{4/3 - 4/3}} + \frac{(\cos \theta)^{4/3 - 4/3}}{(\sin \theta)^{2/3 - 8/3}}$$

$$= \frac{(\cos \theta)^{6/3}}{1} + \frac{1}{(\sin \theta)^{-6/3}}$$

$$= \cos^2 \theta + \sin^2 \theta = 1 = \text{RHS}$$
Hence, $p^{4/3} q^{2/3} + p^{2/3} q^{4/3} = 1$

or

LHS =
$$\sin^6 \theta + \cos^6 \theta$$

= $(\sin^2 \theta)^3 + (\cos^2 \theta)^3$
= $(\sin^2 \theta + \cos^2 \theta) (\sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta)$
= $\sin^4 \theta + \cos^4 \theta - \sin^2 \theta \cos^2 \theta$ [$\sin^2 \theta + \cos^2 \theta = 1$]
= $\sin^4 \theta + \cos^4 \theta + 2 \sin^2 \theta \cos^2 \theta - 2 \sin^2 \theta \cos^2 \theta - \sin^2 \theta \cos^2 \theta$
= $(\sin^2 \theta + \cos^2 \theta)^2 - 3 \sin^2 \theta \cos^2 \theta$
= $1^2 - 3 \sin^2 \theta \cos^2 \theta$
= $1 - 3 \sin^2 \theta \cos^2 \theta$ = RHS

25. Let the diameters of concentric circle be 4*d* and 5*d*.

 \therefore Radii are 2*d* and $\frac{5}{2}d$.

Ratio of areas of the two regions

= Area of region I : Area of region II
=
$$\pi (2d)^2$$
 : $\pi \left(\frac{5}{2}d\right)^2 - \pi (2d)^2$
= $4d^2$: $\frac{25}{4}d^2 - 4d^2$
= $4d^2$: $\frac{25-16}{4}d^2$
= $4d^2$: $\frac{9}{4}d^2$
= $16:9$

Hence, the ratio of the areas of these regions is 16:9.

Section - C

26. Time required for the bells to ring together is the LCM of 2, 4, 6, 8, 10 and 12 (in minutes).

LCM of 2, 4, 6, 8, 10, 12 = 120

: After every 120 minutes or 2 hours bells toll together

Required number of times = $\frac{12}{2} + 1 = 7$ times

Hence, they rang together between 9 a.m. and 9 p.m. 7 times.

27. Since α and β are the zeroes of the polynomial

 $f(x) = px^{2} + qx + r$ $\alpha + \beta = \frac{-q}{p}, \ \alpha\beta = \frac{r}{p} \qquad \dots(1)$ $\therefore \qquad (\alpha + \beta)^{2} = \frac{q^{2}}{p^{2}} \implies \alpha^{2} + \beta^{2} + 2\alpha\beta = \frac{q^{2}}{p^{2}}$ $\Rightarrow \qquad \alpha^{2} + \beta^{2} + \frac{2r}{p} = \frac{q^{2}}{p^{2}}$ $\Rightarrow \qquad \alpha^{2} + \beta^{2} + \frac{2r}{p} = \frac{q^{2}}{p^{2}} \qquad \dots(2)$ Now, $p\left(\frac{\alpha^{2}}{\beta} + \frac{\beta^{2}}{\alpha}\right) + q\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right) = p\left(\frac{\alpha^{3} + \beta^{3}}{\alpha\beta}\right) + q\left(\frac{\alpha^{2} + \beta^{2}}{\alpha\beta}\right)$

© Ratna Sagar P. Ltd., 2023

$$= p \frac{(\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta)}{\alpha\beta} + q \frac{(\alpha^2 + \beta^2)}{\alpha\beta}$$
$$= \frac{p \left(\frac{-q}{p}\right) \left(\frac{q^2}{p^2} - \frac{2r}{p} - \frac{r}{p}\right)}{r/p} + \frac{q \left(\frac{q^2}{p^2} - \frac{2r}{p}\right)}{r/p}$$

[Using (1) and (2)]

$$= \frac{(-q)(q^2 - 3rp) \times p}{p^2 \times r} + \frac{q(q^2 - 2pr) \times p}{p^2 \times r}$$
$$= \frac{-q^3 + 3prq + q^3 - 2prq}{pr}$$
$$= \frac{prq}{pr} = q$$

28. Let the total number of students be *x* and number of rows be *y*. Number of students in each row = $\frac{x}{x}$

Total number of students = No. of rows × No. of students in each row

$$\Rightarrow \qquad x = (y-1)\left(\frac{x}{y}+2\right)$$
$$\Rightarrow \qquad x = x+2y-\frac{x}{y}-2 \Rightarrow 2y-\frac{x}{y}-2 = 0 \qquad \dots(1)$$

Now, 2 students are removed.

$$x = (y+2)\left(\frac{x}{y} - 2\right)$$
$$x = x - 2y + \frac{2x}{y} - 4 \implies 2y - \frac{2x}{y} + 4 = 0 \qquad \dots(2)$$

 \Rightarrow

Multiplying equation (1) by 2 and then subtracting the result from equation (2), we get,

$$\Rightarrow 2y - \frac{2x}{y} + 4 - \left(4y - \frac{2x}{y} - 4\right) = 0$$

$$\Rightarrow -2y + 8 = 0 \Rightarrow y = 4$$

Substituting $y = 4$ in equation (1), we get

$$2 \times 4 - \frac{x}{4} - 2 = 0$$

$$\Rightarrow \qquad \qquad 6 - \frac{x}{4} = 0 \implies x = 24$$

Hence, the total number of students in parade is 24.

or

Suppose 1 man can finish the work in x days and 1 woman can finish it in y days.

1 man's 1 day work = $\frac{1}{r}$ 1 woman's 1 day work = $\frac{1}{y}$ 8 men and 12 women can finish the work in 10 days $\frac{8}{x} + \frac{12}{y} = \frac{1}{10}$ *.*.. ...(1) 6 men and 8 women can finish the work in 14 days $\frac{6}{x} + \frac{8}{y} = \frac{1}{14}$(2) Multiply equation (1) by 2 and equation (2) by 3 $\frac{16}{x} + \frac{24}{y} = \frac{1}{5}$ \Rightarrow ...(3) $\frac{18}{x} + \frac{24}{y} = \frac{3}{14}$...(4) \Rightarrow Subtracting equation (3) from equation (4) $\frac{18}{r} - \frac{16}{r} = \frac{3}{14} - \frac{1}{5}$ \Rightarrow $\frac{2}{r} = \frac{1}{70} \implies x = 140$ \Rightarrow Substituting x = 140 in equation (2), we get $\frac{6}{140} + \frac{8}{y} = \frac{1}{14} \implies \frac{8}{y} = \frac{1}{14} - \frac{6}{140} \implies \frac{8}{y} = \frac{4}{140}$ y = 280where man alone to finish the work is 140 d \Rightarrow тт 29. Suppose point of intersection of chord QR and PC is M. Let tangent PQ be xand PM be y. $QM = \frac{QR}{2} = \frac{16}{2} \text{ cm} = 8 \text{ cm}$ *.*.. ...(1) [PC is perpendicular bisector of QR]

In
$$\triangle QCM$$
, $CM^2 = QC^2 - QM^2$ [By Pythagoras theorem]
 \Rightarrow $CM = \sqrt{10^2 - 8^2}$ cm = 6 cm [Using (1)]
In right $\triangle PMQ$, $PQ^2 = MP^2 + QM^2$

$$x^2 = y^2 + 64 \text{ cm}^2$$
 ...(2)

$$\angle PQC = 90^{\circ}$$

 \Rightarrow

[Radius through the point of contact is perpendicular to the tangent] $PC^2 = PO^2 + OC^2$ In right $\triangle PQC$, $(PM + CM)^2 = x^2 + 10^2 \text{ cm}^2$ \Rightarrow

$$\Rightarrow \qquad (y+6)^2 = x^2 + 100 \Rightarrow y^2 + 36 + 12y = y^2 + 64 + 100$$
[Using (2)]

$$\Rightarrow \qquad 12y = 164 - 36 \Rightarrow y = 10.67$$
Putting value of y in equation (2)

$$x^2 = (10.67)^2 + 64 = 177.85$$

$$\Rightarrow \qquad x = 13.33$$
Hence, PQ = 13.3 cm.
30. Given: sec θ + tan θ = a ...(1)
Since sec^2 θ - tan² θ = 1 \Rightarrow (sec θ - tan θ) (sec θ + tan θ) = 1

$$\Rightarrow \qquad \sec \theta - \tan \theta = \frac{1}{a} \qquad \dots(2)$$

Adding equations (1) and (2), we get,

$$2 \sec \theta = a + \frac{1}{a} \implies \sec \theta = \frac{a^2 + 1}{2a}$$
 ...(3)

Subtracting equation (2) from (1), we get,

$$2 \tan \theta = a - \frac{1}{a} \implies \tan \theta = \frac{a^2 - 1}{2a} \qquad \dots (4)$$

Now,

$$\operatorname{cosec} \theta = \frac{\sec \theta}{\tan \theta} = \frac{2a}{\frac{a^2 - 1}{2a}}$$

$$= \frac{a^2 + 1}{a^2 - 1}$$
[Using (3) and (4)]

31. Maximum class frequency 15 is of class 60–70 and mode is 67. So, modal class is 60–70.

$$\therefore \qquad l = 60, h = 10, f_1 = 15, f_2 = 12, f_0 = x$$

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$\Rightarrow \qquad 67 = 60 + \left(\frac{15 - x}{2 \times 15 - x - 12}\right) \times 10$$

$$\Rightarrow \qquad 7(18 - x) = (15 - x) \times 10$$

$$\Rightarrow \qquad 126 - 7x = 150 - 10x$$

$$\Rightarrow \qquad 126 - 150 = -10x + 7x$$

$$\Rightarrow \qquad -24 = -3x$$

$$\Rightarrow \qquad x = 8$$

Hence, value of *x* is 8.

Class Marks	Mid value (x _i)	Number of students (f _i)	$u_i = \frac{x_i - a}{h}$	$f_i u_i$
0 - 10	5	5	$\frac{5-55}{10} = -5$	- 25
10 - 20	15	9 - 5 = 4	$\frac{15-55}{10} = -4$	- 16
20 - 30	25	17 – 9 = 8	$\frac{25 - 55}{10} = -3$	- 24
30 - 40	35	29 – 17 = 12	$\frac{35 - 55}{10} = -2$	- 24
40 - 50	45	44 – 29 = 15	$\frac{45 - 55}{10} = -1$	- 15
50 - 60	55 = a	60 - 44 = 16	$\frac{55 - 55}{10} = 0$	0
60 - 70	65	70 - 60 = 10	$\frac{65-55}{10} = 1$	10
70 - 80	75	78 - 70 = 8	$\frac{75-55}{10} = 2$	16
80 - 90	85	83 - 78 = 5	$\frac{85-55}{10} = 3$	15
90 - 100	95	85 - 83 = 2	$\frac{95-55}{10} = 4$	8
		$\Sigma f_i = 85$		$\Sigma f_i u_i = -55$

31. Here, h = 10. Let the assumed mean be a = 55.

Mean,
$$\overline{x} = a + h\overline{u} = a + h\left(\frac{\Sigma f_i u_i}{\Sigma f_i}\right)$$

= 55 + 10 × $\left(\frac{-55}{85}\right) = 48.53$

Hence, mean marks scored by the students is 48.53.

Section - D

32. Let P be the required location of pole such that its distance from gate B is *x*.

 $BP = x \implies AP = x + 7$

....

 \Rightarrow

[Difference of the two distances is 7 m]

 $AB^2 = BP^2 + AP^2 \implies 17^2 = x^2 + (x+7)^2$ In right $\triangle APB$, $289 = x^2 + x^2 + 49 + 14x$ \Rightarrow $2x^2 + 14x - 240 = 0$ \Rightarrow $x^2 + 7x - 120 = 0$ \Rightarrow (x + 15) (x - 8) = 0 \Rightarrow

Distance can't be negative.

Hence, pole is to be erected at 8 m from gates.

33. Given: ΔABC and ΔDEF in which AP and DQ are the medians respectively, such that $\frac{AB}{DE} = \frac{AC}{DF} = \frac{AP}{DO}$

x = -15 or x = 8

To prove:

 $\triangle ABC \sim \triangle DEF$

Proof: Produce AP to G so that PG = AP and join CG.

Similarly, DQ = QH and join FH.

In \triangle APB and \triangle GPC, we have

$$BP = CP$$
 [AP is median]

$$AP = GP$$

$$\angle APB = \angle CPG$$
 [Vertically opposite angles]

9

	$\triangle APB \cong \triangle GPC$	[By SAS criterion of congruence]				
.:.	AB = CQ					
[Corresponding sides of congruent triangle are equal]						
Similarly,	$\Delta DQE \cong \Delta HQF$	[BY SAS criterion of congruence]				
.:.	DE = HF					
	[Corresponding si	ides of congruent triangle are equal]				
Now,	$\frac{AB}{DE} = \frac{AC}{DF} = \frac{AP}{DQ}$					
\Rightarrow	$\frac{\text{GC}}{\text{HF}} = \frac{\text{AC}}{\text{DF}} = \frac{\text{AP}}{\text{DQ}}$					
\Rightarrow	$\frac{\text{GC}}{\text{HF}} = \frac{\text{AC}}{\text{DF}} = \frac{2\text{AF}}{2\text{DQ}}$	$\frac{P}{Q} \Rightarrow \frac{GC}{HF} = \frac{AC}{DF} = \frac{AG}{DH}$				
.:.	$\triangle AGC \sim \triangle DHF$	[By SSS criterion of similarity]				
<i>∴</i>	$\angle 1 = \angle 2$ [Corres	ponding angles of similar triangles]				
Similarly,	$\angle 3 = \angle 4$					
\Rightarrow	$\angle 1 + \angle 3 = \angle 2 + \angle 4$					
\Rightarrow	$\angle A = \angle D$					
In \triangle ABC and \triangle DE	EF					
	$\angle A = \angle D$					
	AB AC					
	$\overline{\text{DE}} = \overline{\text{DF}}$					
<i>.</i>	$\triangle ABC \sim \triangle DEF$	[By SAS criterion of similarity]				
	or					
	$\Delta NSQ \cong \Delta MTR$	[Given]				
	∠SQN =∠TRM					
	[Correspon	nding angles of congruent triangles]				
\Rightarrow	$\angle PQR = \angle PRQ = x$	(1)				
M Q R N						
10						

© Ratna Sagar P. Ltd., 2023

In
$$\triangle PQR$$

 $\mathcal{L}PQR + \mathcal{L}PRQ + \mathcal{L}QPR = 180^{\circ}$
 $x + x + \mathcal{L}^{3} = 180^{\circ}$
 $2x = 180^{\circ} - \mathcal{L}^{3} \implies x = \frac{180^{\circ} - \mathcal{L}^{3}}{2}$...(2)
In $\triangle PST$
 $\mathcal{L}1 + \mathcal{L}2 + \mathcal{L}3 = 180^{\circ}$
 $2\mathcal{L}1 = 180^{\circ} - \mathcal{L}3 \implies \mathcal{L}1 = \frac{180^{\circ} - \mathcal{L}3}{2}$...(3)
From (1), (2) and (3)
 $\mathcal{L}1 = x$
 $\mathcal{L}1 = \mathcal{L}2 = x = \mathcal{L}PQR = \mathcal{L}PRQ$
In $\triangle PTS$ and $\triangle PRQ$
 $\mathcal{L}1 = \mathcal{L}PQR$ [Proved above]
 $\mathcal{L}2 = \mathcal{L}PRQ$
 $\mathcal{L}SPT = \mathcal{L}QPR$ [Common]
Hence, $\triangle PTS \sim \triangle PRQ$ [By AAA criterion of similarity]
34. Volume of object = Volume of cone + Volume of hemisphere
 $= \frac{1}{3}\pi r^{2}h + \frac{2}{3}\pi r^{3}$
 $= \left(\frac{1}{3} \times \pi \times 5^{2} \times 5 + \frac{2}{3} \times \pi \times 5^{3}\right) cm^{3}$
 $= \frac{1}{3}\pi r \times 5^{3} \times 3 cm^{3} = \pi(5)^{3} cm^{3}$
Volume of object = Volume of water displaced in the cylinder
 $\pi(5)^{3} cm^{3} = \pi R^{2}H$
[R is radius of cylinder and H is the increase in water level]
 \Rightarrow (5)³ cm³ = R^{2} \times 4 cm^{3}
 \Rightarrow R = 5.1 cm
Hence, diameter of container is 11.2 cm.
or

(*i*) Let r_1 be the radius of cylinder and h_1 be the height of cylinder. Then, radius of cone be r_2 and height of cone be h_2 .

Then
$$r_1 = \frac{7}{2} \text{ cm}, h_1 = 15 \text{ cm}, r_2 = 3 \text{ cm}, h_2 = 4 \text{ cm}.$$

Slant height $= \sqrt{r_2^2 + h_2^2} = \sqrt{3^2 + 4^2} \text{ cm} = \sqrt{25} \text{ cm} = 5 \text{ cm}$

l = 5 cm

© Ratna Sagar P. Ltd., 2023

11

...

Surface area of remaining solid

$$= 2\pi r_1 h_1 + 2\pi r_1^2 - 2\pi r_2^2 + 2\pi r_2 l$$

= $2 \times \pi (r_1 h_1 + r_1^2 - r_2^2 + r_2 l)$
= $2 \times \frac{22}{7} \left[\frac{7}{2} \times 15 + \frac{49}{4} - 9 + 15 \right] \text{ cm}^2$
= 444.7 cm² (approx.)

(*ii*) Let r and h be respectively the radius and the height of the solid cylinder and let r_1 and h_1 be the radius of the base and the height respectively of each of two identical conical holes at the two ends of the cylinder so that

$$r = \frac{7}{2} \text{ cm}, h = 15 \text{ cm}, r_1 = 3 \text{ cm} \text{ and } h_1 = 4 \text{ cm}.$$

Now, volume of the cylinder

$$= \pi r^{2}h$$

= $\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 15 \text{ cm}^{3}$
= 577.5 cm³ ...(1)

Sum of the volumes of two identical conical holes at the two ends of the cylinder

$$= \frac{2}{3} \times \pi r_1^2 h_1$$

= $\frac{2}{3} \times \frac{22}{7} \times 3 \times 3 \times 4 \text{ cm}^3$
= 75.43 cm³ ...(2)

: Required volume of the cylinder excluding the two conical holes

=
$$(577.5 - 75.43)$$
 cm³ [From (1) and (2)]
= 502.07 cm³

35. Here, h = 3. Let the assumed mean be a = 11.5.

Class	Mid- value x _i	Frequency f _i	Cumulative frequency	$u_i = \frac{x_i - a}{h}$	$f_i u_i$
1-4	2.5	6	6	- 3	- 18
4 - 7	5.5	30	36	- 2	- 60
7 – 10	8.5	40	76	- 1	- 40
10 – 13	11.5 = a	16	92	0	0
13 – 16	14.5	4	96	1	4
16 – 19	17.5	4	100	2	8
		$\Sigma f_i = 100$			$\Sigma f_i u_i = -106$

Mean,
$$\overline{x} = a + h \times \left(\frac{\sum f_i u_i}{\sum f_i}\right) = 11.5 + 3 \times \left(\frac{-106}{100}\right) = 8.32$$

 $n = 100 \implies \frac{n}{2} = 50$

Now,

Cumulative frequency greater than 50 is 76 and corresponding class is
$$7 - 10$$
.
Thus, median class is $7 - 10$.

$$l = 7, h = 3, f = 40, cf = 36, \frac{n}{2} = 50$$

Median = $l + h \times \frac{\left(\frac{n}{2} - cf\right)}{f}$
= $7 + 3 \times \frac{(50 - 36)}{40}$
= $7 + \frac{21}{20} = 8.05$
Mode = 3 Median - 2 Mean

$$= 3 \times 8.05 - 2 \times 8.32 = 24.15 - 16.64 = 7.51$$

Hence, the mean number of alphabets in the names is 8.32, median is 8.05 and modal size is 7.51.

Section - E

36. (*i*) Number of passengers in first coach, $a_1 = 115$ Number of passengers in second coach, $a_2 = 130$ Difference of passengers between 2 coaches, d = 130 - 115 = 15Number of passengers in tenth coach,

$$a_n = a_1 + (n-1)d$$

$$a_{10} = 115 + (10-1) \times 15$$

 \Rightarrow

 \Rightarrow

$a_{10} = 115 + 9 \times 15 \implies a_{10} = 250$

Hence, 250 passengers are seated in the tenth coach. (*ii*) Passengers in fifth coach,

$$a_5 = 115 + (5 - 1) \times 15$$

= 115 + 4 × 15 = 175

Extra passengers in tenth coach than fifth coach

$$= a_{10} - a_5$$

= 250 - 175 = 75

(*iii*) Collection of fare in first coach, f₁ = 115 × ₹ 500 = ₹ 57,500
 Collection of fare in second coach, f₂ = 130 × ₹ 500 = ₹ 65,000
 Difference of fare in 2 consecutive coaches

$$= f_2 - f_1 = ₹ 65,000 - ₹ 57,500 = ₹ 7500$$

or

$$\begin{split} \mathbf{S}_n &= \frac{n}{2} \, \left[2a_1 + (n-1)d \right] \\ \mathbf{S}_{10} &= \frac{10}{2} \, \left[2 \times 115 + (10-1) \times 15 \right] \\ \mathbf{S}_{10} &= 5[230 + 9 \times 15] \implies \mathbf{S}_{10} = 5 \times [230 + 135] \\ \mathbf{S}_{10} &= 1825 \end{split}$$

 \Rightarrow

Hence, total 1825 passengers are seated in the train.

37. (*i*) Lines are along length. So, it will be along *x*-axis. Potatoes are placed along breadth. So, it will be along *y*-axis. $\frac{1}{10}$ th of breadth

$$=\frac{1}{10} \times 200 = 20$$

Hence, coordinates of Raju's flag is (5, 20).

(*ii*) Similarly $\frac{1}{8}$ th of breadth = $\frac{1}{8} \times 200 = 25$

Hence, coordinates of Sanju's flag is (11, 25).

(*iii*) Coordinates of green flag = mid-point of line joining blue and yellow flag. By mid-point formula,

$$x = \frac{x_1 + x_2}{2}, \quad y = \frac{y_1 + y_2}{2}$$
$$\Rightarrow \qquad x = \frac{5 + 11}{2}, \quad y = \frac{25 + 20}{2}$$
$$\Rightarrow \qquad x = 8, \quad y = \frac{45}{2}$$

Hence, coordinates of green flag is $\left(8, \frac{45}{2}\right)$.

or

By distance formula.

Distance between blue and yellow flag

$$= \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

= $\sqrt{(11 - 5)^2 + (25 - 20)^2}$
= $\sqrt{6^2 + 5^2} = \sqrt{36 + 25} = \sqrt{61}$ units

38. (*i*) Let AB be height of temple.

D is point on road. DC is the distance moved.

DC = 40 m

In right $\triangle ABD$, we have

 \Rightarrow

 \Rightarrow

[Given]

 $\tan 60^{\circ} = \frac{AB}{BD}$ $\sqrt{3} = \frac{AB}{BD}$ $BD = \frac{AB}{\sqrt{3}} \qquad \dots (1)$

In right $\triangle ABC$, we have

 $\tan 30^{\circ} = \frac{AB}{BC}$ $\Rightarrow \qquad \frac{1}{\sqrt{3}} = \frac{AB}{BD + 40 \text{ m}}$ $\Rightarrow \qquad \frac{1}{\sqrt{3}} = \frac{AB}{\frac{AB}{\sqrt{3}} + 40 \text{ m}}$ $\Rightarrow \qquad \frac{1}{\sqrt{3}} = \frac{AB\sqrt{3}}{\frac{AB}{\sqrt{3}} + 40 \text{ m}}$ $\Rightarrow \qquad \frac{1}{\sqrt{3}} = \frac{AB\sqrt{3}}{AB + 40\sqrt{3} \text{ m}}$

$$\Rightarrow$$

 $3AB = AB + 40\sqrt{3} \text{ m} \implies 2AB = 40\sqrt{3} \text{ m}$

$$AB = 20\sqrt{3} m$$

Hence, the height of the temple is $20\sqrt{3}$ m.

(*ii*) Area of
$$\triangle ABD = \frac{1}{2} \times AB \times BD$$

= $\frac{1}{2} \times 20\sqrt{3} \times 20 \text{ m}^2 = 200\sqrt{3} \text{ m}^2$

Hence, the area of triangle formed is $200\sqrt{3}$ m². (*iii*) Distance between temple and final point = BC

As,

$$BC = BD + 40 \text{ m}$$

 $BD = \frac{AB}{\sqrt{3}} = \frac{20\sqrt{3} \text{ m}}{\sqrt{3}} = 20 \text{ m}$

$$\therefore$$
 BC = (20 + 40) m = 60 m

Hence, distance from base of temple to final point of observation is 60 m.

or

Distance between top of temple and final point = AC

As,

$$\sin 30^\circ = \frac{AB}{AC}$$

 $\Rightarrow \qquad \frac{1}{2} = \frac{20\sqrt{3} \text{ m}}{AC} \Rightarrow AC = 40\sqrt{3} \text{ m}$

Hence, distance from top of temple to final point of observation is $40\sqrt{3}$ m.