Mathematics

Sample Question Paper

Standard (Code 041)

ANSWERS

Section - A

1. (b)
2. (c)
3. (c)
4. (b)
5. (a)
6. (a)
7. (b)
8. (d)
9. (c)
10. (a)
11. (d)
12. (c)
13. (b)
14. (a)
15. (d)
16. (b)
17. (a)
18. (c)
19. (d)
20. (b)

Section - B

21. Let us assume on the contrary that $\sqrt{7}-\sqrt{2}$ is a rational number. Then, there exist coprime a and $b(b \neq 0)$, such that

$$
\begin{array}{ll}
& \sqrt{7}-\sqrt{2}=\frac{a}{b} \Rightarrow \frac{a}{b}+\sqrt{2}=\sqrt{7} \\
\Rightarrow & \left(\frac{a}{b}+\sqrt{2}\right)^{2}=(\sqrt{17})^{2} \Rightarrow \frac{a^{2}}{b^{2}}+\frac{2 a \sqrt{2}}{b}+2=7 \\
\Rightarrow & \frac{a^{2}}{b^{2}}-5=\frac{-2 a \sqrt{2}}{b} \Rightarrow \frac{a^{2}-5 b^{2}}{b^{2}}=\frac{-2 a \sqrt{2}}{b} \\
\Rightarrow & \frac{a^{2}-5 b^{2}}{2 a b}=-\sqrt{2} \Rightarrow \sqrt{2} \text { is a rational number. }
\end{array}
$$

This contradicts the fact that $\sqrt{2}$ is irrational.
So, our assumption is wrong.
Hence, $\sqrt{7}-\sqrt{2}$ is irrational.
22. In $\triangle \mathrm{PST}$ and $\triangle \mathrm{RQT}$,

$$
\begin{array}{rrr}
& \angle \mathrm{PTS}=\angle \mathrm{QTR} & \text { [Vertically opp. } \angle s \text {] } \\
& \angle \mathrm{PST}=\angle \mathrm{RQT} & {[\mathrm{PS} \| \mathrm{QR}, \text { alternate angles] }} \\
\Rightarrow & \Delta \mathrm{PST} & \sim \Delta \mathrm{RQT}
\end{array} \quad \text { [By AA criterion of similarity] }
$$

In $\Delta \mathrm{QUT}$ and $\Delta \mathrm{QPS}$,

$$
\begin{array}{lcc}
& \angle \mathrm{QUT}=\angle \mathrm{QPS} & \text { [Corresponding angles, } \mathrm{TU}|\mid \mathrm{PS} \text {] } \\
& \angle \mathrm{QTU}=\angle \mathrm{QSP} & \text { [Corresponding angles, } \mathrm{TU}|\mid \mathrm{PS} \text {] } \\
\therefore & \Delta \mathrm{QUT} \sim \Delta \mathrm{QPS} & \text { [By AA criterion of similarity] } \\
\therefore & \frac{\mathrm{QT}}{\mathrm{QS}}=\frac{\mathrm{UT}}{\mathrm{PS}} \Rightarrow & \frac{26}{39}=\frac{\mathrm{UT}}{18} \quad\left[\begin{array}{l}
\text { [QS }=\mathrm{ST}+\mathrm{QT}] \\
\Rightarrow
\end{array}\right. \\
& \mathrm{UT}=12 \mathrm{~cm} &
\end{array}
$$

Hence, $\mathrm{TQ}=26 \mathrm{~cm}$ and $\mathrm{UT}=12 \mathrm{~cm}$.
23. Since the tangent at any point of a circle is perpendicular to the radius through the point of contact, therefore $\mathrm{CQ} \perp \mathrm{XZ}$ and $\mathrm{CP} \perp \mathrm{XY}$
$\Rightarrow \quad \angle X=\angle C P X=\angle C Q X=90^{\circ}$
$\therefore \quad \mathrm{CP}=\mathrm{XQ}=\mathrm{XP}=r \quad$ [Radius of circle]
Now,
$\mathrm{ZQ}=\mathrm{ZR}=\mathrm{XZ}-\mathrm{XQ}=(16 \mathrm{~cm}-r)$
$\mathrm{YR}=\mathrm{YP}=\mathrm{XY}-\mathrm{XP}=(12 \mathrm{~cm}-r)$
$\therefore \quad \mathrm{YZ}=\mathrm{ZR}+\mathrm{YR}=16 \mathrm{~cm}-r+12 \mathrm{~cm}-r=28 \mathrm{~cm}-2 r$
[Using (1) and (2)] ...(3)

Now,

$$
Y Z^{2}=X Z^{2}+X Y^{2}
$$

\Rightarrow
$(28 \mathrm{~cm}-2 r)^{2}=16^{2} \mathrm{~cm}^{2}+12^{2} \mathrm{~cm}^{2}$
[Using (3)]
$\Rightarrow \quad(28 \mathrm{~cm}-2 r)^{2}=20^{2} \mathrm{~cm}^{2}$
$\Rightarrow \quad 28 \mathrm{~cm}-2 r=20 \mathrm{~cm} \quad \Rightarrow \quad r=4 \mathrm{~cm}$
Hence, $r=4 \mathrm{~cm}$.
or
Let side $B C$ of isosceles $\triangle A B C$ touch circle at D.

Given:

$A B=A C$

To prove:

$$
\mathrm{BD}=\mathrm{DC}
$$

Proof: Since the lengths of tangents drawn from an external point to circle are equal,
\therefore
$\mathrm{AE}=\mathrm{AF}$
Similarly,
$B E=B D$ and $C F=C D$
Now,
$\mathrm{AB}-\mathrm{AE}=\mathrm{AC}-\mathrm{AF}$
$B E=C F$
\Rightarrow
$\mathrm{BD}=\mathrm{DC}$
$[\because B E=B D$ and $C F=D C]$

Hence, BC is bisected at point of contact.
24. $\operatorname{cosec} \theta-\sin \theta=p$

$$
\text { and } \sec \theta-\cos \theta=q
$$

[Given]

$$
\begin{aligned}
\Rightarrow \quad \begin{aligned}
\frac{1}{\sin \theta}-\sin \theta & =p \text { and } \frac{1}{\cos \theta}-\cos \theta=q \\
\Rightarrow \quad \frac{1-\sin ^{2} \theta}{\sin \theta} & =p \text { and } \frac{1-\cos ^{2} \theta}{\cos \theta}=q \\
\Rightarrow \quad \frac{\cos ^{2} \theta}{\sin \theta} & =p \text { and } \frac{\sin ^{2} \theta}{\cos \theta}=q \\
\mathrm{LHS} & =p^{4 / 3} q^{2 / 3}+p^{2 / 3} q^{4 / 3} \\
= & \left(\frac{\cos ^{2} \theta}{\sin \theta}\right)^{4 / 3}\left(\frac{\sin ^{2} \theta}{\cos \theta}\right)^{2 / 3}+\left(\frac{\cos ^{2} \theta}{\sin \theta}\right)^{2 / 3}\left(\frac{\sin ^{2} \theta}{\cos \theta}\right)^{4 / 3} \\
& =\frac{(\cos \theta)^{8 / 3-2 / 3}}{(\sin \theta)^{4 / 3-4 / 3}+\frac{(\cos \theta)^{4 / 3-4 / 3}}{(\sin \theta)^{2 / 3-8 / 3}}} \\
& =\frac{(\cos \theta)^{6 / 3}}{1}+\frac{1}{(\sin \theta)^{-6 / 3}} \\
& =\cos \theta+\sin ^{2} \theta=1=\mathrm{RHS}
\end{aligned}
\end{aligned}
$$

Hence, $\quad p^{4 / 3} q^{2 / 3}+p^{2 / 3} q^{4 / 3}=1$

$$
\begin{aligned}
\text { LHS } & =\sin ^{6} \theta+\cos ^{6} \theta \\
& =\left(\sin ^{2} \theta\right)^{3}+\left(\cos ^{2} \theta\right)^{3} \\
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\sin ^{4} \theta+\cos ^{4} \theta-\sin ^{2} \theta \cos ^{2} \theta\right) \\
& =\sin ^{4} \theta+\cos ^{4} \theta-\sin ^{2} \theta \cos ^{2} \theta \quad\left[\sin ^{2} \theta+\cos ^{2} \theta=1\right] \\
& =\sin ^{4} \theta+\cos ^{4} \theta+2 \sin ^{2} \theta \cos ^{2} \theta-2 \sin ^{2} \theta \cos ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta \\
& =\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{2}-3 \sin ^{2} \theta \cos ^{2} \theta \\
& =1^{2}-3 \sin ^{2} \theta \cos ^{2} \theta \\
& =1-3 \sin ^{2} \theta \cos ^{2} \theta=\text { RHS }
\end{aligned}
$$

25. Let the diameters of concentric circle be $4 d$ and $5 d$.
$\therefore \quad$ Radii are $2 d$ and $\frac{5}{2} d$.
Ratio of areas of the two regions

$$
\begin{aligned}
& =\text { Area of region I : Area of region II } \\
& =\pi(2 d)^{2}: \pi\left(\frac{5}{2} d\right)^{2}-\pi(2 d)^{2} \\
& =4 d^{2}: \frac{25}{4} d^{2}-4 d^{2} \\
& =4 d^{2}: \frac{25-16}{4} d^{2} \\
& =4 d^{2}: \frac{9}{4} d^{2} \\
& =16: 9
\end{aligned}
$$

Hence, the ratio of the areas of these regions is $16: 9$.

Section - C

26. Time required for the bells to ring together is the LCM of $2,4,6,8,10$ and 12 (in minutes).

$$
\text { LCM of } 2,4,6,8,10,12=120
$$

$\therefore \quad$ After every 120 minutes or 2 hours bells toll together
Required number of times $=\frac{12}{2}+1=7$ times
Hence, they rang together between 9 a.m. and 9 p.m. 7 times.
27. Since α and β are the zeroes of the polynomial

$$
\begin{align*}
f(x) & =p x^{2}+q x+r \\
\alpha+\beta & =\frac{-q}{p}, \alpha \beta=\frac{r}{p} \tag{1}\\
\therefore \quad(\alpha+\beta)^{2} & =\frac{q^{2}}{p^{2}} \Rightarrow \alpha^{2}+\beta^{2}+2 \alpha \beta=\frac{q^{2}}{p^{2}} \\
\Rightarrow \quad \alpha^{2}+\beta^{2}+\frac{2 r}{p} & =\frac{q^{2}}{p^{2}} \\
\Rightarrow \quad \alpha^{2}+\beta^{2} & =\frac{q^{2}}{p^{2}}-\frac{2 r}{p} \tag{2}\\
\text { Now, } p\left(\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}\right)+q\left(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\right) & =p\left(\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}\right)+q\left(\frac{\alpha^{2}+\beta^{2}}{\alpha \beta}\right)
\end{align*}
$$

$$
\begin{aligned}
& =p \frac{(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right)}{\alpha \beta}+q \frac{\left(\alpha^{2}+\beta^{2}\right)}{\alpha \beta} \\
& =\frac{p\left(\frac{-q}{p}\right)\left(\frac{q^{2}}{p^{2}}-\frac{2 r}{p}-\frac{r}{p}\right)}{r / p}+\frac{q\left(\frac{q^{2}}{p^{2}}-\frac{2 r}{p}\right)}{r / p} \\
& =\frac{(-q)\left(q^{2}-3 r p\right) \times p}{p^{2} \times r}+\frac{q\left(q^{2}-2 p r\right) \times p}{p^{2} \times r} \\
& =\frac{-q^{3}+3 p r q+q^{3}-2 p r q}{p r} \\
& =\frac{p r q}{p r}=q
\end{aligned}
$$

28. Let the total number of students be x and number of rows be y.

Number of students in each row $=\frac{x}{y}$
Total number of students $=$ No. of rows \times No. of students in each row

$$
\begin{array}{ll}
\Rightarrow & x=(y-1)\left(\frac{x}{y}+2\right) \\
\Rightarrow & x=x+2 y-\frac{x}{y}-2 \Rightarrow 2 y-\frac{x}{y}-2=0 \tag{1}
\end{array}
$$

Now, 2 students are removed.

$$
\begin{align*}
x & =(y+2)\left(\frac{x}{y}-2\right) \\
\Rightarrow \quad x & =x-2 y+\frac{2 x}{y}-4 \Rightarrow 2 y-\frac{2 x}{y}+4=0 \tag{2}
\end{align*}
$$

Multiplying equation (1) by 2 and then subtracting the result from equation (2), we get,

$$
\begin{array}{lll}
\Rightarrow & 2 y-\frac{2 x}{y}+4-\left(4 y-\frac{2 x}{y}-4\right)=0 \\
\Rightarrow & -2 y+8=0 \Rightarrow y=4
\end{array}
$$

Substituting $y=4$ in equation (1), we get

$$
\begin{aligned}
& 2 \times 4-\frac{x}{4}-2 & =0 \\
\Rightarrow & 6-\frac{x}{4} & =0 \Rightarrow x=24
\end{aligned}
$$

Hence, the total number of students in parade is 24 .

```
or
```

Suppose 1 man can finish the work in x days and 1 woman can finish it in y days.

1 man's 1 day work $=\frac{1}{x}$
1 woman's 1 day work $=\frac{1}{y}$
8 men and 12 women can finish the work in 10 days

$$
\begin{equation*}
\therefore \quad \frac{8}{x}+\frac{12}{y}=\frac{1}{10} \tag{1}
\end{equation*}
$$

6 men and 8 women can finish the work in 14 days
$\therefore \quad \frac{6}{x}+\frac{8}{y}=\frac{1}{14}$
Multiply equation (1) by 2 and equation (2) by 3

$$
\begin{array}{ll}
\Rightarrow & \frac{16}{x}+\frac{24}{y}=\frac{1}{5} \\
\Rightarrow & \frac{18}{x}+\frac{24}{y}=\frac{3}{14} \tag{4}
\end{array}
$$

Subtracting equation (3) from equation (4)

$$
\begin{aligned}
\Rightarrow & \frac{18}{x}-\frac{16}{x} & =\frac{3}{14}-\frac{1}{5} \\
\Rightarrow & \frac{2}{x} & =\frac{1}{70} \Rightarrow x=140
\end{aligned}
$$

Substituting $x=140$ in equation (2), we get

$$
\begin{aligned}
& \\
\Rightarrow \quad \frac{6}{140}+\frac{8}{y} & =\frac{1}{14} \Rightarrow \frac{8}{y}=\frac{1}{14}-\frac{6}{140} \Rightarrow \frac{8}{y}=\frac{4}{140} \\
y & =280
\end{aligned}
$$

Hence, time taken by one man alone to finish the work is 140 days.
And time taken by one woman alone to finish the work is 280 days.
29. Suppose point of intersection of chord QR and PC is M . Let tangent PQ be x and PM be y.

$$
\begin{equation*}
\therefore \quad \mathrm{QM}=\frac{\mathrm{QR}}{2}=\frac{16}{2} \mathrm{~cm}=8 \mathrm{~cm} \tag{1}
\end{equation*}
$$

[PC is perpendicular bisector of QR]
In $\triangle \mathrm{QCM}$,

$$
\mathrm{CM}^{2}=\mathrm{QC}^{2}-\mathrm{QM}^{2}
$$

[By Pythagoras theorem]
$\Rightarrow \quad \mathrm{CM}=\sqrt{10^{2}-8^{2}} \mathrm{~cm}=6 \mathrm{~cm}$
[Using (1)]
In right $\triangle \mathrm{PMQ}$, $\mathrm{PQ}^{2}=\mathrm{MP}^{2}+\mathrm{QM}^{2}$
$x^{2}=y^{2}+64 \mathrm{~cm}^{2}$
$\angle \mathrm{PQC}=90^{\circ}$
[Radius through the point of contact is perpendicular to the tangent] In right $\triangle \mathrm{PQC}$,

$$
\mathrm{PC}^{2}=\mathrm{PQ}^{2}+\mathrm{QC}^{2}
$$

$$
\Rightarrow \quad(\mathrm{PM}+\mathrm{CM})^{2}=x^{2}+10^{2} \mathrm{~cm}^{2}
$$

$$
\begin{array}{ll}
\Rightarrow & (y+6)^{2}=x^{2}+100 \Rightarrow y^{2}+36+12 y=y^{2}+64+100 \\
\Rightarrow & \quad 12 y=164-36 \Rightarrow y=10.67
\end{array}
$$

Putting value of y in equation (2)

$$
\begin{array}{rlrl}
& & x^{2} & =(10.67)^{2}+64=177.85 \\
\Rightarrow & x & =13.33
\end{array}
$$

Hence, $\mathrm{PQ}=13.3 \mathrm{~cm}$.
30. Given:

$$
\begin{equation*}
\sec \theta+\tan \theta=a \tag{1}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sec ^{2} \theta-\tan ^{2} \theta=1 \Rightarrow(\sec \theta-\tan \theta)(\sec \theta+\tan \theta)=1 \tag{2}
\end{equation*}
$$

$\Rightarrow \quad \sec \theta-\tan \theta=\frac{1}{a}$
Adding equations (1) and (2), we get,

$$
\begin{equation*}
2 \sec \theta=a+\frac{1}{a} \Rightarrow \sec \theta=\frac{a^{2}+1}{2 a} \tag{3}
\end{equation*}
$$

Subtracting equation (2) from (1), we get,

$$
\begin{aligned}
2 \tan \theta & =a-\frac{1}{a} \Rightarrow \tan \theta=\frac{a^{2}-1}{2 a} \\
\operatorname{cosec} \theta & =\frac{\sec \theta}{\tan \theta}=\frac{\frac{a^{2}+1}{2 a}}{\frac{a^{2}-1}{2 a}} \quad \text { [Using (3) and (4)] } \\
& =\frac{a^{2}+1}{a^{2}-1}
\end{aligned}
$$

31. Maximum class frequency 15 is of class $60-70$ and mode is 67 . So, modal class is $60-70$.

$$
\begin{aligned}
\therefore & l & =60, h=10, f_{1}=15, f_{2}=12, f_{0}=x \\
& \text { Mode } & =l+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \\
\Rightarrow & 67 & =60+\left(\frac{15-x}{2 \times 15-x-12}\right) \times 10 \\
\Rightarrow & 7(18-x) & =(15-x) \times 10 \\
\Rightarrow & 126-7 x & =150-10 x \\
\Rightarrow & 126-150 & =-10 x+7 x \\
\Rightarrow & -24 & =-3 x \\
\Rightarrow & x & =8
\end{aligned}
$$

Hence, value of x is 8 .
or
31. Here, $h=10$. Let the assumed mean be $a=55$.

Class Marks	Mid value $\left(x_{i}\right)$	Number of students $\left(f_{i}\right)$	$u_{i}=\frac{x_{i}-a}{h}$	$f_{i} u_{\mathrm{i}}$
0-10	5	5	$\frac{5-55}{10}=-5$	-25
10-20	15	$9-5=4$	$\frac{15-55}{10}=-4$	- 16
20-30	25	$17-9=8$	$\frac{25-55}{10}=-3$	- 24
30-40	35	$29-17=12$	$\frac{35-55}{10}=-2$	- 24
40-50	45	$44-29=15$	$\frac{45-55}{10}=-1$	-15
50-60	$55=a$	$60-44=16$	$\frac{55-55}{10}=0$	0
$60-70$	65	$70-60=10$	$\frac{65-55}{10}=1$	10
70-80	75	$78-70=8$	$\frac{75-55}{10}=2$	16
80-90	85	$83-78=5$	$\frac{85-55}{10}=3$	15
90-100	95	$85-83=2$	$\frac{95-55}{10}=4$	8
		$\Sigma f_{i}=85$		$\Sigma f_{i} u_{i}=-55$

$$
\text { Mean, } \begin{aligned}
\bar{x} & =a+h \bar{u}=a+h\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \\
& =55+10 \times\left(\frac{-55}{85}\right)=48.53
\end{aligned}
$$

Hence, mean marks scored by the students is 48.53 .

Section - D

32. Let P be the required location of pole such that its distance from gate B is x.

$\therefore \quad \mathrm{BP}=x \quad \Rightarrow \quad \mathrm{AP}=x+7$
[Difference of the two distances is 7 m]
In right $\triangle \mathrm{APB}$,

$$
\mathrm{AB}^{2}=\mathrm{BP}^{2}+\mathrm{AP}^{2} \Rightarrow 17^{2}=x^{2}+(x+7)^{2}
$$

\Rightarrow

$$
289=x^{2}+x^{2}+49+14 x
$$

$\Rightarrow \quad 2 x^{2}+14 x-240=0$
$\Rightarrow \quad x^{2}+7 x-120=0$
$\Rightarrow \quad(x+15)(x-8)=0$
$\Rightarrow \quad x=-15$ or $x=8$
Distance can't be negative.
Hence, pole is to be erected at 8 m from gates.
33. Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ in which AP and DQ are the medians respectively, such that $\frac{A B}{D E}=\frac{A C}{D F}=\frac{A P}{D Q}$

To prove: $\quad \triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
Proof: Produce AP to G so that $\mathrm{PG}=\mathrm{AP}$ and join CG.
Similarly, DQ = QH and join FH.
In $\triangle \mathrm{APB}$ and $\triangle \mathrm{GPC}$, we have

$$
\begin{aligned}
\mathrm{BP} & =\mathrm{CP} \\
\mathrm{AP} & =\mathrm{GP} \\
\angle \mathrm{APB} & =\angle \mathrm{CPG} \quad \text { [AP is median] }
\end{aligned}
$$

$$
\begin{array}{lrl}
\therefore & \Delta \mathrm{APB} & \cong \triangle \mathrm{GPC}
\end{array} \quad \text { [By SAS criterion of congruence] }
$$

Similarly,
[Corresponding sides of congruent triangle are equal]

$$
\Delta \mathrm{DQE} \cong \Delta \mathrm{HQF}
$$

[BY SAS criterion of congruence]
$\mathrm{DE}=\mathrm{HF}$
[Corresponding sides of congruent triangle are equal]
Now, $\frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{AP}}{\mathrm{DQ}}$
$\Rightarrow \quad \frac{\mathrm{GC}}{\mathrm{HF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{AP}}{\mathrm{DQ}}$
$\Rightarrow \quad \frac{\mathrm{GC}}{\mathrm{HF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{2 \mathrm{AP}}{2 \mathrm{DQ}} \Rightarrow \frac{\mathrm{GC}}{\mathrm{HF}}=\frac{\mathrm{AC}}{\mathrm{DF}}=\frac{\mathrm{AG}}{\mathrm{DH}}$
$\therefore \quad \triangle \mathrm{AGC} \sim \triangle \mathrm{DHF} \quad$ [By SSS criterion of similarity]
$\therefore \quad \angle 1=\angle 2$ [Corresponding angles of similar triangles]
Similarly,

$$
\angle 3=\angle 4
$$

$$
\begin{array}{lc}
\Rightarrow & \angle 1+\angle 3=\angle 2+\angle 4 \\
\Rightarrow & \angle \mathrm{~A}=\angle \mathrm{D}
\end{array}
$$

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$

$$
\begin{aligned}
\angle \mathrm{A} & =\angle \mathrm{D} \\
\therefore \quad \frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{AC}}{\mathrm{DF}} \\
\therefore \quad \triangle \mathrm{ABC} & \sim \Delta \mathrm{DEF}
\end{aligned}
$$

or

$$
\begin{array}{lll}
& \Delta \mathrm{NSQ} \cong & \cong \\
\therefore & \angle \mathrm{MTR} & \text { [Given] } \\
& \angle \mathrm{SQN} &
\end{array}
$$

[Corresponding angles of congruent triangles]
$\Rightarrow \quad \angle \mathrm{PQR}=\angle \mathrm{PRQ}=x$

In $\triangle \mathrm{PQR}$

$$
\begin{align*}
\angle \mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{QPR} & =180^{\circ} \\
x+x+\angle 3 & =180^{\circ} \\
2 x & =180^{\circ}-\angle 3 \quad \Rightarrow \quad x=\frac{180^{\circ}-\angle 3}{2}
\end{align*}
$$

In $\triangle \mathrm{PST}$

$$
\begin{align*}
\angle 1+\angle 2+\angle 3 & =180^{\circ} \\
2 \angle 1 & =180^{\circ}-\angle 3 \Rightarrow \angle 1=\frac{180^{\circ}-\angle 3}{2} \tag{3}
\end{align*}
$$

From (1), (2) and (3)

$$
\begin{aligned}
& \angle 1 & =x \\
\therefore & \angle 1 & =\angle 2=x=\angle \mathrm{PQR}=\angle \mathrm{PRQ}
\end{aligned}
$$

In $\triangle \mathrm{PTS}$ and $\triangle \mathrm{PRQ}$

$$
\begin{array}{rlr}
\angle 1 & =\angle \mathrm{PQR} & \text { [Proved above] } \\
\angle 2 & =\angle \mathrm{PRQ} & \\
\angle \mathrm{SPT} & =\angle \mathrm{QPR} & \text { [Common] } \\
\triangle \mathrm{PTS} & \sim \Delta \mathrm{PRQ} \quad \text { [By AAA criterion of similarity] } \\
& =\text { Volume of cone }+ \text { Volume of hemisphere } \\
& =\frac{1}{3} \pi r^{2} h+\frac{2}{3} \pi r^{3} \\
& =\left(\frac{1}{3} \times \pi \times 5^{2} \times 5+\frac{2}{3} \times \pi \times 5^{3}\right) \mathrm{cm}^{3} \\
& =\frac{1}{3} \pi \times 5^{3} \times 3 \mathrm{~cm}^{3}=\pi(5)^{3} \mathrm{~cm}^{3}
\end{array}
$$

Hence,
34. Volume of object

Volume of object $=$ Volume of water displaced in the cylinder

$$
\pi(5)^{3} \mathrm{~cm}^{3}=\pi \mathrm{R}^{2} \mathrm{H}
$$

[R is radius of cylinder and H is the increase in water level]
$\Rightarrow \quad(5)^{3} \mathrm{~cm}^{3}=\mathrm{R}^{2} \times 4 \mathrm{~cm}^{3}$
$\Rightarrow \quad \mathrm{R}=5.1 \mathrm{~cm}$

Hence, diameter of container is 11.2 cm .

```
or
```

(i) Let r_{1} be the radius of cylinder and h_{1} be the height of cylinder. Then, radius of cone be r_{2} and height of cone be h_{2}.

Then

$$
r_{1}=\frac{7}{2} \mathrm{~cm}, h_{1}=15 \mathrm{~cm}, r_{2}=3 \mathrm{~cm}, h_{2}=4 \mathrm{~cm}
$$

$$
\therefore \quad l=5 \mathrm{~cm}
$$

Surface area of remaining solid

$$
\begin{aligned}
& =2 \pi r_{1} h_{1}+2 \pi r_{1}^{2}-2 \pi r_{2}^{2}+2 \pi r_{2} l \\
& =2 \times \pi\left(r_{1} h_{1}+r_{1}^{2}-r_{2}^{2}+r_{2} l\right) \\
& =2 \times \frac{22}{7}\left[\frac{7}{2} \times 15+\frac{49}{4}-9+15\right] \mathrm{cm}^{2} \\
& =444.7 \mathrm{~cm}^{2} \text { (approx.) }
\end{aligned}
$$

(ii) Let r and h be respectively the radius and the height of the solid cylinder and let r_{1} and h_{1} be the radius of the base and the height respectively of each of two identical conical holes at the two ends of the cylinder so that

$$
r=\frac{7}{2} \mathrm{~cm}, h=15 \mathrm{~cm}, r_{1}=3 \mathrm{~cm} \text { and } h_{1}=4 \mathrm{~cm} .
$$

Now, volume of the cylinder

$$
\begin{align*}
& =\pi r^{2} h \\
& =\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 15 \mathrm{~cm}^{3} \\
& =577.5 \mathrm{~cm}^{3} \tag{1}
\end{align*}
$$

Sum of the volumes of two identical conical holes at the two ends of the cylinder

$$
\begin{align*}
& =\frac{2}{3} \times \pi r_{1}^{2} h_{1} \\
& =\frac{2}{3} \times \frac{22}{7} \times 3 \times 3 \times 4 \mathrm{~cm}^{3} \\
& =75.43 \mathrm{~cm}^{3} \tag{2}
\end{align*}
$$

$\therefore \quad$ Required volume of the cylinder excluding the two conical holes

$$
\begin{aligned}
& =(577.5-75.43) \mathrm{cm}^{3} \\
& =502.07 \mathrm{~cm}^{3}
\end{aligned}
$$

35. Here, $h=3$. Let the assumed mean be $a=11.5$.

Class	Mid- value x_{i}	Frequency f_{i}	Cumulative frequency	$u_{i}=\frac{x_{i}-a}{\boldsymbol{h}}$	$f_{i} u_{i}$
$1-4$	2.5	6	6	-3	-18
$4-7$	5.5	30	36	-2	-60
$7-10$	8.5	40	76	-1	-40
$10-13$	$11.5=a$	16	92	0	0
$13-16$	14.5	4	96	1	4
$16-19$	17.5	4	100	2	8
		$\Sigma f_{i}=100$			$\Sigma f_{i} u_{i}=-106$

$$
\text { Mean, } \begin{aligned}
\bar{x} & =a+h \times\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right)=11.5+3 \times\left(\frac{-106}{100}\right)=8.32 \\
n & =100 \Rightarrow \frac{n}{2}=50
\end{aligned}
$$

Now,
Cumulative frequency greater than 50 is 76 and corresponding class is $7-10$. Thus, median class is $7-10$.

$$
\begin{aligned}
l & =7, h=3, f=40, c f=36, \frac{n}{2}=50 \\
\text { Median } & =l+h \times \frac{\left(\frac{n}{2}-c f\right)}{f} \\
& =7+3 \times \frac{(50-36)}{40} \\
& =7+\frac{21}{20}=8.05 \\
\text { Mode } & =3 \text { Median }-2 \text { Mean } \\
& =3 \times 8.05-2 \times 8.32=24.15-16.64=7.51
\end{aligned}
$$

Hence, the mean number of alphabets in the names is 8.32 , median is 8.05 and modal size is 7.51.

Section - E

36. (i) Number of passengers in first coach, $a_{1}=115$

Number of passengers in second coach, $a_{2}=130$
Difference of passengers between 2 coaches, $d=130-115=15$
Number of passengers in tenth coach,

$$
\begin{aligned}
a_{n} & =a_{1}+(n-1) d \\
\Rightarrow \quad & a_{10}
\end{aligned}=115+(10-1) \times 15
$$

$$
\Rightarrow \quad a_{10}=115+9 \times 15 \Rightarrow a_{10}=250
$$

Hence, 250 passengers are seated in the tenth coach.
(ii) Passengers in fifth coach,

$$
\begin{aligned}
a_{5} & =115+(5-1) \times 15 \\
& =115+4 \times 15=175
\end{aligned}
$$

Extra passengers in tenth coach than fifth coach

$$
\begin{aligned}
& =a_{10}-a_{5} \\
& =250-175=75
\end{aligned}
$$

(iii) Collection of fare in first coach, $f_{1}=115 \times ₹ 500=₹ 57,500$

Collection of fare in second coach, $f_{2}=130 \times ₹ 500=₹ 65,000$
Difference of fare in 2 consecutive coaches

$$
\begin{aligned}
& =f_{2}-f_{1} \\
& =₹ 65,000-₹ 57,500=₹ 7500 \\
& \quad \text { or }
\end{aligned}
$$

Total passengers seated in train,

$$
\begin{aligned}
\mathrm{S}_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
\mathrm{S}_{10} & =\frac{10}{2}[2 \times 115+(10-1) \times 15] \\
\Rightarrow \quad \mathrm{S}_{10} & =5[230+9 \times 15] \Rightarrow \mathrm{S}_{10}=5 \times[230+135] \\
\mathrm{S}_{10} & =1825
\end{aligned}
$$

Hence, total 1825 passengers are seated in the train.
37. (i) Lines are along length. So, it will be along x-axis.

Potatoes are placed along breadth. So, it will be along y-axis. $\frac{1}{10}$ th of breadth

$$
=\frac{1}{10} \times 200=20
$$

Hence, coordinates of Raju's flag is $(5,20)$.
(ii) Similarly $\frac{1}{8}$ th of breadth $=\frac{1}{8} \times 200=25$

Hence, coordinates of Sanju's flag is $(11,25)$.
(iii) Coordinates of green flag = mid-point of line joining blue and yellow flag. By mid-point formula,

$$
\begin{array}{ll}
& x=\frac{x_{1}+x_{2}}{2}, y=\frac{y_{1}+y_{2}}{2} \\
\Rightarrow & x=\frac{5+11}{2} \quad y=\frac{25+20}{2} \\
\Rightarrow \quad & x=8, y=\frac{45}{2}
\end{array}
$$

Hence, coordinates of green flag is $\left(8, \frac{45}{2}\right)$.
or
By distance formula.
Distance between blue and yellow flag

$$
\begin{aligned}
& =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(11-5)^{2}+(25-20)^{2}} \\
& =\sqrt{6^{2}+5^{2}}=\sqrt{36+25}=\sqrt{61} \text { units }
\end{aligned}
$$

38. (i) Let AB be height of temple.
D is point on road. DC is the distance moved.

$$
\mathrm{DC}=40 \mathrm{~m}
$$

[Given]
In right $\triangle \mathrm{ABD}$, we have

$$
\begin{array}{rlrl}
& & \tan 60^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BD}} \\
\Rightarrow & \sqrt{3} & =\frac{\mathrm{AB}}{\mathrm{BD}} \\
\Rightarrow & \mathrm{BD} & =\frac{\mathrm{AB}}{\sqrt{3}} \tag{1}
\end{array}
$$

In right $\triangle A B C$, we have

$$
\begin{array}{rlrl}
& & \tan 30^{\circ} & =\frac{\mathrm{AB}}{\mathrm{BC}} \\
\Rightarrow & \frac{1}{\sqrt{3}} & =\frac{\mathrm{AB}}{\mathrm{BD}+40 \mathrm{~m}} \\
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{\mathrm{AB}}{\frac{\mathrm{AB}}{\sqrt{3}}+40 \mathrm{~m}} \\
\Rightarrow & \frac{1}{\sqrt{3}}=\frac{\mathrm{AB} \sqrt{3}}{\mathrm{AB}+40 \sqrt{3} \mathrm{~m}}
\end{array}
$$

$$
\begin{array}{ll}
\Rightarrow & 3 \mathrm{AB}=\mathrm{AB}+40 \sqrt{3} \mathrm{~m} \Rightarrow 2 \mathrm{AB}=40 \sqrt{3} \mathrm{~m} \\
\Rightarrow & \mathrm{AB}=20 \sqrt{3} \mathrm{~m}
\end{array}
$$

Hence, the height of the temple is $20 \sqrt{3} \mathrm{~m}$.
(ii) Area of $\triangle \mathrm{ABD}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BD}$

$$
=\frac{1}{2} \times 20 \sqrt{3} \times 20 \mathrm{~m}^{2}=200 \sqrt{3} \mathrm{~m}^{2}
$$

Hence, the area of triangle formed is $200 \sqrt{3} \mathrm{~m}^{2}$.
(iii) Distance between temple and final point $=\mathrm{BC}$

$$
\mathrm{BC}=\mathrm{BD}+40 \mathrm{~m}
$$

As, $B D=\frac{A B}{\sqrt{3}}=\frac{20 \sqrt{3} \mathrm{~m}}{\sqrt{3}}=20 \mathrm{~m}$
$\therefore \quad B C=(20+40) \mathrm{m}=60 \mathrm{~m}$
Hence, distance from base of temple to final point of observation is 60 m .

Distance between top of temple and final point $=\mathrm{AC}$
As, $\quad \sin 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$\Rightarrow \quad \frac{1}{2}=\frac{20 \sqrt{3} \mathrm{~m}}{\mathrm{AC}} \Rightarrow \mathrm{AC}=40 \sqrt{3} \mathrm{~m}$
Hence, distance from top of temple to final point of observation is $40 \sqrt{3} \mathrm{~m}$.

